

Teacher's Manual MATHEMATICS Class-5

I. LARGE NUMBERS

EXERCISE 1.1

1. (a) $55,06,42,000=$ fifty five crore six lakh forty-two thousand.
(b) $2,02,02,200=$ Two crore two lakh two thouand two hundred.
(c) $8,35,42,697=$ Eight crore thirty-five lakh fortytwo thousand six hundred ninetyseven.
(d) $6,11,22,388=$ Six crore eleven lakh twenty-two thousand three hundred eightyeight.
(e) $99,40,01,101=$ Ninety-nine crore forty lakh one thousand one hundred one.
(f) 4,00,04,049 = Four crore four thousand forty nine.
2. (a) Seventy-seven lakh seventy-seven thousand eight hundred fifty-three $=77,77,853$
(b) Three crore ten lakh ten thousand ten $=3,10,10,010$
(c) Five crore fifty-two thousand one hundred nine $=$ 5,00,52,109
(d) Eighty lakh eight thousand five hundred fifteen = 80,08,515
(e) Ninety crore seven thousand forty $=90,00,07,040$

EXERCISE 1.2

1. (a) 6 in $7,01,43,600=$ One period, hundreds place
(b) 4 in $2,65,74,385=$ Thousands period, one thousands place.
(c) 8 in $92,80,642=$ Thousands period, ten thousands place.
(d) 6 in $65,22,444=$ Lakhs period, ten lakhs place.
(e) 4 in $4,70,55,189=$ Crores period, one crores place.
(f) 5 in $94,75,62,831=$ Lakhs period, one lakhs place.
(g) 1 in 1,40,00,204 $=$ crores period, one crores place.
(h) 5 in $8,35,42,697=$ lakhs period, one lakhs place.
(i) 9 in 20,35,53,097= Ones period, tens place.
2. (a) 2 in $27,465,418=$ Millions period ten millions place
(b) 5 in $64,532,981=$ Thousands period, hundred thousands place.
(c) 8 in $30,140,872=$ Ones period, hundreds place.
(d) 8 in 899,999,999= Millions period, hundred millions place.
(e) 7 in $88,875,666=$ Thousands period, ten thousands place.
(f) 2 in 403,020,130= Thousands period, ten thousands place.
(g) 6 in 13,546,789 = Thousands period, one thousands place.
(h) 6 in $80,540,316=$ Ones period, Ones place.
(i) 4 in $94,200,001=$ Millions period, one millions place.
3. (a) $254387=2,54,387$ (b) $510036=5,10,036$
(c) $9376585=93,76,585$ (d) $805717233=80,57,17,233$
4. (a) $6392378=6,392,378$ (b) $723451084=723,451,084$
(c) $28032926=28,032,926(\mathrm{~d}) 361931450=361,931,450$
5. (a) $6,04,15,709=60,415,709$ (b) $65,00,14,580=650,014,580$
(c) $74,35,89,162=743,589,162$
(d) $9,09,09,099=90,909,099$
6. (a) $30,100,279=3,01,00,279$
(b) $941,000,035=94,10,00,035$
(c) $504,409,008=50,44,09,008$
(d) $83,016,214=8,30,16,214$
7. (a) $72233499=$ Seventy-two million two hundred thirtythree thousand four hundred ninety-nine.
(b) $883990090=$ Eight hundred eighty three million nine hundred ninety thousand ninety.
(c) 51124258 =Fifty-one million one hundred twentyfour thousands two hundred fifty-eight.
(d) 20202200 =Twenty million two hundred two thousand two hundred.
(e) 83542697 =Eighty-three million five hundred forty two thousands six hundred ninety-seven.
(f) 550642000= Five hundred fifty million six hundred forty-two thousand.
8. (a) Nine million one hundred fifty-seven thousand four hundred eighty-two $=9,157,482$
(b) Sixty-four million forty-three thousand $=64,043,000$
(c) Two hundred fifty million six hundred thirty thousand two hundred eighty $=250,630,280$
(d) Seventy-eight million eight hundred ninety thousand five hundred five $=78,890,505$
(e) Thirty million five hundred sixty-three thousand seven hundred forty-two $=30,563,742$
9. - 10. Do it yourself.

EXERCISE 1.3

1. \& 2. Do it yourself.
2. (a) 6 in 1,69,35,849 $=60,00,000$
(b) 9 in $4,79,85,803=9,00,000$
(c) 8 in $81,45,60,219=80,00,00,000$
(d) 9 in 269,078,243 $=9,000,000$
(e) 3 in $730,426,947=30,000,000$
(f) 8 in $846,230,631=800,000,000$
3. (a) $45,62,870=40,00,000+5,00,000+60,000$ $+2000+800+70$
(b) $5,04,31,089=5,00,00,000+4,00,000+30,000$ $+1000+80+9$
(c) to (h) Do it yourself.
4. (a) $5,00,00,000+30,00,000+6,00,000+90,000+5000$ $+700+80+6=5,36,95,786$
(b) $70,000,000+5,000,000+800,000+60,000+4000+$ $800+60+5=75,864,865$

EXERCISE 1.4

1. (a) $2,35,680 \quad 2,35,681$

Mathematics (3, 4 and 5)
(120)
(b) $2,45,679 \quad 2,45,680$
(c) $92,47,699 \quad 92,47,700$
(d) $82,79,999 \quad 82,80,000$
2. (a) $47,58,940 \quad 47,58,939$
(b) $2,57,89,100 \quad 2,57,89,099$
(c) $2,48,68,000 \quad 2,48,67,999$
(d) $2,47,80,000 \quad 2,47,79,999$
3. (a) $8,32,250>8,32,224$
(b) $2,26,978>2,26,878$
(c) $2,93,73,246<2,93,89,845$
(d) 19,26,79,195 > 18,29,76,958
(e) 206,049,236 < 206,149,236
(f) $36,463,209>36,436,209$
(g) $23,89,985>9,56,876$
(h) $22,10,012>18,88,888$
4. (a) $1,53,52,109 ; 1,65,32,109 ; 1,63,25,109$
(b) $2,30,30,400 ; 3,30,30,400 ; 3,20,30,400$
(c) $66,66,606 ; 66,60,066 ; 66,60,666$
(d) $52,67,304 ; 52,57,304 ; \underline{52,77,304}$
5. (a) $3,54,618 ; 2,74,318 ; 1,88,888$
(b) $5,85,888 ; 5,58,588 ; 5,58,885$
(c) $24,88,617 ; 25,88,717,26,88,517$
(d) $4,08,88,045 ; 5,08,68,045 ; 4,08,68,045$
6. (a) $9,37,214 ; 9,37,412 ; 9,37,442$
(b) $51,09,861 ; 67,61,048 ; 81,61,037$
(c) $29,37,453 ; 29,37,543 ; 29,47,543$
(d) $2,94,58,631 ; 2,95,46,831 ; 2,95,48,631$
7. (a) $8,87,087 ; 8,78,807 ; 7,88,870$
(b) $19,41,752 ; 19,41,572 ; 14,91,752$
(c) $44,44,35,015 ; 44,43,45,105 ; 44,43,45,015$
(d) $6,95,83,295 ; 6,59,93,259 ; 6,59,83,259$

EXERCISE 1.5

Greatest
 Smallest

1. (a) $7,6,4,2,1,3,5$

76,54,321
86,54,320
12,34,567
(b) $5,0,3,2,4,6,8$

96,53,210
20,34,568
(c) $9,6,3,0,5,2,1$

97,54,321
10,23,569
(d) $7,1,2,5,4,3,9$

98,54,320
Greatest
2. (a) $8,4,6,2$

88,88,642
22,22,468
(b) 1, 3, 0, 6

66,66,310 10,00,036
(c) $3,2,5,0$

55,55,320 20,00,035
(d) $7,6,0,8$

88,88,760
60,00,078

EXERCISE 1.6

1. (a) $5,48,6305,48,640 ; 5,48,650 ; 5,48,660 ; 5,48,670$;
(b) $46,25,37046,25,380 ; 46,25,390 ; 46,25,400 ; 46,25,410$
2. (a) $2,38,680 \quad 2,38,780 ; 2,38,880 ; 2,38,980 ; 2,39,080$
(b) $15,43,73915,43,839 ; 15,43,939 ; 15,44,039$;

15,44,139
3. (a) 3, 68, $2743,69,274 ; 3,70,274 ; 3,71,274 ; 372,274$;
(b) $14,26,74914,27,749 ; 14,28,749 ; 14,29,749 ; 14,30,749$

EXERCISE 1.7

1. (a) 12,350
(b) 27,470
(c) $1,35,320$
(d) $2,40,520$
2. (a) 20,200
(b) 19,000
(c) $49,68,500$
(d) $18,71,200$
3. (a) 35,000
(b) $2,19,000$
(c) $4,24,000$
(d) $5,35,000$
4. (a) $4,00,000$
(b) $3,00,000$
(c) $4,00,000$
(d) $2,00,000$
5. (a) 8600 m
(b) 8800 m
(c) 7800 m
(d) 8100 m
(e) 8600 m
6. Population of country $=7,52,03,431$
(a) Nearest lakh

The digit at the lakhs place $=2$
The digit next right to it $=0$
So we put zeroes in place of all the digits at the right of the lakhs place :
7, 52,00, 000
(b) Nearest crore

The digit at the crore place $=7$
The digit next right to it $=5$
So we add 1 at the crores place :

$$
7+1=8
$$

So, now nearest crore $=8,00,00,000$
7. Distance $=14,88,00,000 \mathrm{~km}$

For nearest crore

The digit at the crore place $=4$
The digit next right to it $=8$
So, we add 1 at the crore place $=4+1=5$
So, Now nearest crore $=15,00,00,000 \mathrm{~km}$.
8. (a) Number $=6,84,32,715$

Digit at crore place $=6$
Digit next to it $=8$
So we add 1 at crore place $=6+1=7$
So, nearest crore $=7,00,00,000$
(b) Number $=9,40,30,110$

Digit at crore place $=9$
Digit next to it $=4$
So we take it zero
Now nearest crore $=9,00,00,000$
(c) \& (d) Do it yourself.

2. ROMAN NUMERALS

EXERCISE 2.1

1. (a) $10=V V, \boxtimes$
(b) $49=I L, X L I X$
(c) $99=\mathrm{IC}, ~ X \mathrm{CIX}$
(d) $40=\mathrm{XXXX}, \mathrm{XL}$
(e) $450=\mathrm{LD}, \mathrm{CDL}$
(c) $490=$ CDXC, $\times D$
2. (a) $14=X I V$
(b) $19=\mathrm{XIX}$
(c) $83=$ LXXXIII
(d) $92=\mathrm{XCII}$
(e) $39=$ XXXIX
(f) $89=$ LXXXIX
(g) $145=$ CXLV
(h) $218=$ CCXVIII
(i) $328=$ CCCXXVIII
(j) $448=$ CDXLVIII (k) $593=$ DXCIII
(I) $489=$ CDLXXXIX
(m) $499=$ CDXCIX (n) $555=$ DLV
(o) $666=\mathrm{DCLXVI}$
(p) $979=\mathrm{CMLXXIX}(\mathbf{q}) 591=\mathrm{DXCI}$ (r) $678=$ DCLXXVIII(s) $789=$ DCCLXXXIX (t) $999=$ CMXCIX
3. (a) $\mathrm{XIX}=19$
(b) $X X I V=24$
(c) $\mathrm{XXXIII}=33$
(d) $X L I I=42$
(e) $X L V I=46$
(f) LIII = 53
(g) $L X I V=64$
(h) LXXXII $=82$
(i) $\mathrm{XCII}=92$
(j) $\mathrm{XCIX}=99$
(k) $\mathrm{CIII}=103$
(I) $\mathrm{XCIV}=94$
(m) $\mathrm{CIV}=104$
(n) $\mathrm{CXXIX}=129$
(o) $\mathrm{CCXV}=215$
(p) $C C X X I I=322$
(q) $\mathrm{CDLXVI}=466$
(r) $D C L V=655$
(s) $\mathrm{DCCXIV}=714$
(t) CMLXIX $=969$
4. (a) $X X I I I+$ III $=26$
(b) $\mathrm{XLI}+\mathrm{XI}=52$
(c) $\mathrm{XXXV}+\mathrm{VII}=42$
(d) $X L+X=50$
(e) $\mathrm{CXX}+\mathrm{XL}=160$
(f) $\mathrm{CCC}+\mathrm{C}=400$
(g) $C D+C C C=700$
(h) $\mathrm{CM}+\mathrm{C}=1000$

3. FUNDAMENTAL OPERATIONS

EXERCISE 3.1

1. (a) $\begin{array}{r}111112 \\ +\quad 962653 \\ +\quad 43729 \\ +\quad 756378 \\ \hline 1762760 \\ \hline\end{array}$
(b) 122111 (c)

438957
1111211
85462
$+\quad 432483$
435389
$+\quad 993334$
(d)

> 2R222111
> 4937689
(e) 1111111 2

1256237
(f)

1112211 23456789
$+467983+58783919+1234567$
$\begin{array}{r}+5895674 \\ +11301346 \\ \hline+7324516 \\ \hline+34564672 \\ \hline\end{array}$

(g)	11111111 (h)	11]1121	
	17984760	34428176	
	+51409634	+28031496	
	$\begin{array}{r}\text { + } \\ + \\ \hline\end{array}$	+26235467	
	71748483	88695139	
2. (a)	111 (b)	111122111] (c)	11111222
	55544333	64477888	52345678
	+44433222	+ 5537646	+43216789
	+33322111	+ 678715 $+\quad 6$	+97475656
	133299666	70694249	193038123

3. Land cost $=₹ 732400$
Construction cost = ₹ 453721

Labour cost	$=+₹ 200739$
Total cost	$=\underline{₹ 1386860}$

4. Repair cost $=₹ 356870$

Painting cost	$=₹ 109400$
Furniture cost	$=+₹ 264968$
Total cost	$=\overline{₹ 731238}$

5.	Votes of 1st candidate	$=8724738$
	Votes of 2nd candidate	$=4554936$
	Votes of 3rd candidate	$=\quad 937569$
	Votes not polled candidate	$=+345607$
	Total votes	$=14562850$
6.	Travel Cost	$=₹ 56864$
	Hotel cost	$=₹ 145675$
	Shopping cost	$=+₹ 85750$
	Total cost	₹ 288289

7.

Price of gold	$=₹ 450750$
Price of diamond	$=₹ 973450$
Price of precious stone	$=+₹ 349648$
Total price	$=₹ 1773848$

8. No. of men
$=\quad 57920408$
No. of women
$=\quad 45672082$
No. of children
$=+39900785$
Total people
$=\underline{143493275}$
9. Production in a certain year $=946475$ toys

Production in next year	$=+457268$ toys
Production in two years	$=\underline{1403743 \text { toys }}$

10. In a certain year no. of viewers $=53756380$ In next year no. of viewers $=+22567492$ In two years no. of viewers $=\underline{76323872}$

EXERCISE 3.2

1. (a) 23144671
(b) 60231040
$\begin{array}{r}-\quad 3565278 \\ \hline 19579393 \\ \hline\end{array}$
(b) $\begin{array}{r}\frac{-34270451}{25960589} \\ \hline 12345678\end{array}$
2. (a) 8723450
(b) $\begin{array}{r}12345678 \\ -\quad 9234567\end{array}$
(c) $\begin{array}{r}-\quad 2578765 \\ \hline 32144685 \\ \hline\end{array}$
$\begin{array}{r}-123123123 \\ \hline 198198198 \\ \hline\end{array}$
(d)

$-\quad 9234567$
3111111
53214568
$-\quad 23400769$
29813799

3. $6547832+3215387-4925466$
(a)

6547832
$+\quad 3215387$
9763219

(b) 35012345-5645789-13254678

5. $(1678456+2134987)-N U M B E R$

$$
=(2134987-1678456)
$$

(3813443) - NUMBER $=456531$
\therefore NUMBER $=3813443-456531$

$$
=3356912
$$

6. Population of city $A=13545720$ Population of city $B=12547251$ City A has more population. And more population $=13545720$

$$
\begin{array}{r}
12547251 \\
\hline 998469 \\
\hline
\end{array}
$$

7. Population of a country $=\begin{array}{lllllllll}1 & 7 & 2 & 3 & 4 & 5 & 1 & 0 & 0\end{array}$ No. of men $=\quad 85625347$
No. of women $=67523140$
\therefore Population of children
$=172345100-(85625347+67523140)$

$$
\begin{aligned}
& =172345100-153148487 \\
& =19196613
\end{aligned}
$$

8. Sugar in Godown $=58702234 \mathrm{~kg}$
more sugar arrived $=+47235265 \mathrm{~kg}$
Now total sugar $=105937499 \mathrm{~kg}$
Sugar delivered $=-64352789 \mathrm{~kg}$
Sugar left
$=\begin{array}{r}41584710 \\ \mathrm{~kg}\end{array}$

9

Required no. \quad	121344000
	$=-67235207$
54108793	

10. Increase in population $=401255700$

$$
=\begin{array}{r}
-246677888 \\
=\begin{array}{l}
154577812
\end{array}
\end{array}
$$

EXERCISE 3.3

1. (a)

300
$\times 16$
1800
3000
4800

(b)

(c) $25 \times 4000=(25 \times 4) \times 1000$

$$
\begin{aligned}
& =100 \times 1000 \\
& =100000
\end{aligned}
$$

(d) $500 \times 600=(5 \times 6) \times 10000$

$$
=300000
$$

(e) to (h): Do it yourself.

2. Total no. of students $=1895$

Each student pays = ₹5422
So, total amount collected

$$
\begin{aligned}
& =₹ 5422 \times 1895 \\
& =₹ 10274690
\end{aligned}
$$

3. In one day sale of milk $=3456$ litre
\because Leap year has $=366$ days
So, In 366 days sale of milk $=3456 \times 366$
$=1264896$ litre
4. $\because 1$ hour $=60$ minutes
$\therefore 24$ hours $=60 \times 24=1440$ minutes
\because In one minute engine pumps $=1246$ litre of water
\therefore In 1440 minutes engine pumps $=1246 \times 1440$
$=1794240$ litre of water
5. \because Cost of 1 watch $=₹ 645$
\therefore Cost of 3675 watches $=₹ 645 \times 3675$

$$
\text { = ₹ } 2370375
$$

6. $\because 1$ box have $=288$ oranges
$\therefore 6345$ boxes have $=288 \times 6345$

$$
\text { = } 1827360 \text { oranges }
$$

7. In one day factory produces $=4365$ bags

In 365 days factory produces $=4365 \times 365$

$$
=1553940 \text { bags }
$$

EXERCISE 3.4

1. (a) $1500 \div 50$

Number of zeroes left in quotient $=2-1=1$
Now, $150 \div 5=30$
(b) $10,000 \div 500$

Number of zeroes left in quotient $=4-2=2$
Now, $100 \div 5=20$
(c) $24,000 \div 600$

Number of zeroes left in quotient $=3-2=1$
Now, $240 \div 6=40$
(d) to (h) Do it yourself.
(i)

1564	(j) 1324
$1 4 4 \longdiv { 2 2 5 2 1 6 }$	(J) $3 7 2 \longdiv { 4 9 2 7 2 0 }$
-144	-372 ${ }^{-127}$
812	1207
720V	1116
924 8 ¢	912
	$744 \downarrow$
576	1680
576	1488
0	192

$Q=1564$
$Q=1324, R=192$
(k) to (p) Do it yourself.
2. 275 apples are packed in $=1$ box

1 apple is packed in $=\frac{1}{275}$
2544025 apples are packed $=\frac{2544025}{275}$
= 9251 boxes
3. Cost of 827 almirahs is
= ₹1940969
Cost of 1 almirah
$=\frac{1940969}{827}$
= ₹2347 boxes
4. 125 matchboxes in = 1 carton

1 matchbox in
$=\frac{1}{125}$
827500 matchboxes in $=\frac{827500}{125}$
= 6620 cartons
5. Cost of 378 tricycles $=₹ 471366$

Cost of 1 tricycle $\quad=₹ \frac{471366}{378}$
= ₹ 1247
6. 725 litre of water $=1$ minute

1 litre of water $\quad=\frac{1}{725}$
1001950 litre of water $=\frac{1001950}{725}$ minutes
= 23 hours 2 minutes
7. Product of two nos. 9147669

If one no. = 951
Then other no. $=\frac{9147669}{951}$
= 9619

EXERCISE 3.5

1. (a) $4590 ; 4600 ; 5000$
(b) 9370; 9400; 9000
(c) 6690; 6700; 7000
(d) 4180; 4200; 4000
(e) $9550 ; 9500 ; 10,000$
2. (a) $87+318=90+320$ (closer estimate)
$=410$
(b) $898+785=900+790$ (closer estimate)

$$
=1690
$$

(c) $958+387=960+390$ (closer estimate)

$$
=1350
$$

(d) $81+479=80+480$ (closer estimate)
$=560$
3. (a) $59+342$

Rough estimate $=50+350=400$
Closer estimate $=50+350=400$
(b) $582+178$

Rough estimate $=600+200=800$
Closer estimate $=580+180=760$
(c) $8734-7599$

Rough estimate $=8700-7600=1100$
Closer estimate $=8730-7600=1130$
(d) 9348-8365

Rough estimate $=9300-8400=900$
Closer estimate $=9350-8370=980$
4. (a) 19×795

On estimating $=20 \times 800=16000$
(b) 489×362

On estimating $=500 \times 400=200000$
(c) 325×8491

On estimating $=300 \times 8000=2400000$
(d) 2904×888

On estimating $=3000 \times 900=2700000$
Mental maths = Do it yourself

4. PRIME FACTORISATION

EXERCISE 4.1

1. (a) $1 ; 3 ; 9$
(b) $1 ; 2 ; 3 ; 4 ; 6 ; 12$
(c) $1 ; 2 ; 4 ; 5 ; 10 ; 20$
(d) $1 ; 3 ; 5 ; 9 ; 15 ; 45$
(e) $1 ; 3 ; 7 ; 9 ; 21 ; 63$
2. (a) 23

Factors of $23=1,23$
\therefore no. of factors $=2$
(b) 24

Factors of $24=1,2,3,4,6,8,12,24$
\therefore no. of factors $=8$
(c) 35

Factors of $35=1,5,7,35$
\therefore no. of factors $=4$
(d) 40

$$
\begin{aligned}
\text { Factors of } 40 & =1,2,4,5,8,10,20,40 \\
\therefore \text { no. of factors } & =8
\end{aligned}
$$

(e) 72

$$
\text { Factors of } 72=\begin{gathered}
1,2,3,4,6,8,9,12,18,24,36 \text {, } \\
72
\end{gathered}
$$

\therefore no. of factors $=12$
3. (a) Factors of $6=1,2,3,6$
$\therefore 6$ has more than two factors
\therefore it is a composite no.
(b) Factors of $10=1,2,5,10$
$\therefore 10$ has more than two factors
\therefore it is a composite no.
(c) Factors of $17=1,17$
$\therefore 17$ has only two factors
\therefore it is a prime no.
(d) Factors of $28=1,2,4,7,14,28$
$\therefore 28$ has more than two factors
\therefore it is a prime no.
(e) Factors of $41=1,41$
$\therefore 41$ has only two factors
\therefore it is a prime no.
(f) to (i) Do it yourself.

5. Fill in the blanks

(a) The smallest composite number is 4.
(b) Every prime number is odd except 2.
(c) Two consecutive numbers which are prime numbers are $\underline{2}$ and $\underline{3}$.
(d) The only even prime number is $\underline{2}$.
(e) The number 4 has $\underline{3}$ factors.
(f) A composite number has $\underline{3}$ or more factors
(g) 1 is neither prime nor composite
(h) There are $\underline{25}$ prime numbers between 1 and 100.

EXERCISE 4.2

1. Do it youself.
2. (a) 1348

It is divisible by 2 but it is not divisible by 3 .
So it is not divisible by 6 .
(b) 1500

It is divisible by $2 \& 3$.
So it is divisible by 6.
(c) 3426

It is divisible by $2 \& 3$.
So it is divisible by 6 .
(d) 2856

It is divisible by $2 \& 3$.
So it is divisible by 6 .
(e) 10724

It is divisible by 2 but it is not divisible by 3 .
So it is divisible by 6 .
3. (a) 847

$$
\begin{array}{ll}
\because & (8+7) ;(4) \\
15-4=11
\end{array} \quad \text { Divisible by } 11
$$

So, 847 is divisible by 11 .
(b) 1331

$$
\begin{array}{rlr}
\because & (1+3)=4 ; & 3+1=4 \\
& 4-4=0 &
\end{array}
$$

So, 1331 is divisible by 11 .
(c) 5083

$$
\begin{aligned}
\because & (5+8)=13 ; \\
& 13-3=10
\end{aligned}
$$

\therefore It is not divisible by 11 .
(d) 80618

$$
\begin{aligned}
\because \quad & (8+6+8)=22 ; \quad 1+0=1 \\
& 22-1=21
\end{aligned}
$$

\therefore It is not divisible by 11 .
(e) 10824

$$
\begin{aligned}
\because & (1+8+4)=13 ; & & 0+2=2 \\
& 13-2=11 & & \text { Divisible by } 11
\end{aligned}
$$

\therefore It is not divisible by 11 .
4. Do it yourself.

5. (a) | 2 | 12 |
| :---: | :---: |
| 2 | 6 |
| 3 | 3 |
| | 1 |

(b) | 2 | 16 |
| ---: | ---: |
| 2 | 8 |
| 2 | 4 |
| 2 | 2 |
| | 1 |

$12=2 \times 2 \times 3$
$16=2 \times 2 \times 2 \times 2$

(c) | 2 | 18 |
| :---: | :---: |
| 3 | 9 |
| 3 | 3 |
| | 1 |

(d) | 2 | 20 |
| :---: | :---: |
| 2 | 10 |
| 5 | 5 |
| | 1 |

$$
\begin{aligned}
& 18=2 \times 3 \times 3 \quad 20=2 \times 2 \times 5 \\
& \text { (e) to }(\mathbf{t}): \text { Do it yourself }
\end{aligned}
$$

(u) | 2 | 108 |
| :---: | :---: |
| 2 | 54 |
| 3 | 27 |
| 3 | 9 |
| 3 | 3 |
| | 1 |

(v)

2	126
3	63
3	21
7	7
	1

$$
\therefore 108=2 \times 2 \times 3 \times 3 \times 3 \quad \therefore 126=2 \times 3 \times 3 \times 7
$$

(w)	2	144
	2	72
	2	36
	2	18
	3	9
	3	3
Mathem		1

(x) | 2 | 176 |
| ---: | ---: |
| 2 | 88 |
| 2 | 44 |
| 2 | 22 |
| 11 | 11 |
| | 1 |

Mathematics (3, 4 and 5)

$$
\begin{aligned}
& \therefore 144=2 \times 2 \times 2 \times 2 \times 3 \times 3 \\
& \therefore 176=2 \times 2 \times 2 \times 2 \times 11
\end{aligned}
$$

(y) | 2 | 224 |
| :---: | :---: |
| 2 | 112 |
| 2 | 56 |
| 2 | 28 |
| 2 | 14 |
| 7 | 7 |
| | 1 |

$\therefore 224=2 \times 2 \times 2 \times 2 \times 2 \times 7$

5. HCF AND LCM

EXERCISE 5.1

1. (a) 12,18

$$
\begin{array}{rlr}
12=2 \times 2 \times 3 & 25=5 \times 5 \\
18=\underset{\downarrow}{2} \times 3 \times 3 & 35=5 \times 7 \\
\downarrow & \downarrow
\end{array}
$$

$$
\mathrm{HCF}=5
$$

$$
=6
$$

(c) 20, 32

$$
20=2 \times 2 \times 5
$$

$$
\begin{aligned}
32= & 2 \times 2 \times 2 \times 2 \times 2 \\
& \downarrow \downarrow
\end{aligned}
$$

$\mathrm{HCF}=2 \times 2=4$
(d) 25,45
(e) 56,72
$25=5 \times 5$
$56=2 \times 2 \times 2 \times 7$

(f) 52,78

$$
\begin{aligned}
52= & 2 \times 2 \times 13 \\
78= & 2 \times 3 \times 13 \\
& \downarrow \downarrow \\
& \downarrow \\
\text { HCF } & =2 \times 13=26
\end{aligned}
$$

(g) 63,147
(h) 88,132

$\mathrm{HCF}=3 \times 7=21$

$\begin{aligned} 72= & 2 \times 2 \times 2 \times 3 \times 3 \\ & \downarrow \downarrow \downarrow \downarrow\end{aligned}$
 $\mathrm{HCF}=2 \times 2 \times 2=8$

$\mathrm{HCF}=2 \times 2 \times 11=44$
2. (a)

2	64,	96
2	32,	48
2	16,	24
2	8,	12
2	4,	6
	2,	3

(b) | 7 | $35,49,84$ |
| :--- | :--- |
| | $5, \quad 7,12$ |

$\therefore \mathrm{HCF}=7$
$\therefore \mathrm{HCF}=2 \times 2 \times 2 \times 2 \times 2=32$

(c) | 4 | 32, | 40, | 56 |
| :--- | :--- | :--- | :--- |
| 2 | 8, | 10, | 14 |
| | 4, | 5, | 7 |

$\therefore \mathrm{HCF}=4 \times 2=8$

(d) | 9 | 54, | 72, | 90 |
| :---: | :---: | :---: | :---: |
| 2 | 6, | 8, | 10 |
| | 3, | 4, | 5 |

(e) | 8 | 32, | 48, |
| :--- | :--- | :--- |
| | 4, | 6, |

$\therefore \mathrm{HCF}=9 \times 2=18$
$\therefore \mathrm{HCF}=8$

(f) | 2 | $72,120,150$ |
| :--- | :--- |
| 3 | $36,60,75$ |
| | $12,20,25$ |

$\therefore \mathrm{HCF}=2 \times 3=6$

(g) | 5 | $60,90,135$ | |
| :--- | :--- | :--- |
| 3 | 12, | 18, |
| | 4, | 6, |
| | 9 | |

$\therefore \mathrm{HCF}=15$

(h) | 4 | $64,112,144$ |
| :--- | :--- |
| 4 | $16,28,36$ |
| | $4,7,9$ |

$\therefore \mathrm{HCF}=4 \times 4=16$
3. First we subtract the respective remainders from the given numbers,

$$
55-1=54, \quad 84-3=81, \quad 140-5=135
$$

Now HCF of 54, 81, 135

9	54,	81	135
3	6,	9,	15
	2,	3,	5

$\mathrm{HCF}=9 \times 3$
Greatest common divisor $=27$
4. $220-4=216,376-4=372 \quad 424-4=420$

Now HCF of 216, 372, 420

4	$216,372,420$			
3	54,	93,		
	18,	31,	\quad	HCF $=12$
:---				
Greatest common Divisior $=12$				

Mathematics (3, 4 and 5)

1. (a)

$$
\begin{aligned}
& 287 \stackrel{410}{41} \\
& \frac{-287}{123} \sqrt{287 \pi} 2 \\
& \frac{246}{41) 123 / 3} \\
& \frac{123}{\times}
\end{aligned}
$$

\therefore HCF of 287 and $410=41$
(b)

$$
4 1 8 \longdiv { 5 7 0 } 1
$$

$\frac{-418}{152} \sqrt{418} / 2^{2}$	
1141521	
114	
	$3 8 \longdiv { 1 1 4 } 3$
	114
	\times

\therefore HCF of 418 and $570=38$
(c)

$$
\begin{aligned}
& 1 4 4 \longdiv { 1 9 8 } 1 \\
& \frac{-144}{-54} \prod_{\left.144\right|^{2}} \\
& \\
& \frac{36}{1 8 \longdiv { 3 6 } 2} \\
& \begin{array}{l}
\frac{36}{\times} \\
\hline
\end{array}
\end{aligned}
$$

\therefore HCF of 144 and $198=18$
(d)

$$
\begin{aligned}
& 315 \begin{array}{|l}
\frac{567}{} \\
\frac{-315}{252} \sqrt{315} 1 \\
\frac{252}{63)} 252(4
\end{array} \\
& \frac{252}{x}
\end{aligned} \therefore \text { HCF of } 315 \text { and } 567=63
$$

(e) to (h): Do it yourself.
(i) 216, 372, 420

$$
\begin{aligned}
& 2 1 6 \longdiv { 3 7 2 } 1 \\
& \begin{array}{l}
\frac{-216}{156} / 216 / 1 \\
\frac{156}{60 / 156 / 2}
\end{array} \\
& \frac{120}{3 6 \longdiv { 6 0 } 1} \\
& \frac{36}{24)} 361 \\
& 24 \\
& 12 / 24 / 2 \\
& \frac{24}{\times}
\end{aligned}
$$

Now H.C.F of 12 and 420

$$
12 \begin{gathered}
420 \\
\frac{-36}{60} \\
\frac{60}{x} \\
\hline
\end{gathered}
$$

\therefore H.C.F of $216,372,420=12$
(j) $225,425,340$

$$
\begin{aligned}
& 2 2 5 \longdiv { 3 4 0 \quad 1 } \\
& \frac { - 2 2 5 } { 1 1 5 } \longdiv { 2 2 5 } 1 \\
& \frac { 1 1 5 } { 1 1 0 } \longdiv { 1 1 5 } 1 \\
& \frac { 1 1 0 } { 5 } \longdiv { 1 1 0 / 2 2 } \\
& \frac{10}{10} \\
& \frac{10}{\times}
\end{aligned}
$$

Now H.C.F of 5 and 425

$$
\begin{gathered}
5 \longdiv { 4 2 5 } 8 5 \\
\frac{-40}{25} \\
\frac{25}{\times} \\
\hline
\end{gathered}
$$

\therefore H.C.F of $225,425,340=5$
(\mathbf{k}) to (n): Do it yourself.
2. Greatest capacity $=$ Greatest common factor of 96,120,144
$9 6 \longdiv { 1 2 0 } 1$

$$
\begin{array} { l }
{ \frac { - 9 6 } { 2 4) 9 6 \text { l4 } } } \\
{ \frac { 9 6 } { \frac { 9 } { x } } }
\end{array} \quad 2 4 \longdiv { \frac { 1 4 4 } { \frac { - 1 4 4 } { x } } 6 }
$$

\therefore Greatest capacity $=24$ litres
3. HCF of $5.60,4.20,3.50$ (m)
or HCF of 560, 420, 350 (cm)

$$
\begin{gathered}
350 \begin{array}{l}
420 \\
\frac{-350}{70} \\
\sqrt{350} 5 \\
\frac{350}{\times}
\end{array}
\end{gathered}
$$

$$
7 0 \longdiv { 5 6 0 } 8
$$

$$
-560
$$

$$
\underset{ }{x}
$$

$$
\therefore \mathrm{HCF}=70
$$

Hence, length of longest rod $=70 \mathrm{~cm}$
4. Greatest common factor of 351 and 837
\therefore Greatest no. of marbles $=27$

$$
\begin{aligned}
& 3 5 1 \longdiv { 8 3 7 } 2 \\
& \frac{-702}{135} \sqrt{351 / 2} \\
& \frac { 2 7 0 } { 8 1 } \longdiv { 1 3 5 1 } \\
& \frac { 8 1 } { 5 4 } \longdiv { 8 1 } \\
& \frac { 5 4 } { 2 7 } \longdiv { 5 4 } \\
& \begin{array}{r}
54 \\
\times \\
\hline
\end{array}
\end{aligned}
$$

5. HCF of 144 and 198

$$
\begin{aligned}
& 1 4 4 \longdiv { 1 9 8 } 2 \\
& - \frac { 1 4 4 } { 5 4 } \longdiv { 1 4 4 } \boldsymbol { 2 } ^ { 2 } \\
& \frac { 1 0 8 } { 3 6 } \longdiv { 5 4 } \\
& \frac { 3 6 } { 1 8 } \longdiv { 3 6 } 2 \\
& \frac{36}{x}
\end{aligned}
$$

\therefore Maximum length of each piece $=18 \mathrm{~cm}$
6. HCF of 867 and 680

$$
\begin{aligned}
& 6 8 0 \longdiv { 8 6 7 } 1 \\
& \frac { 6 8 0 } { 1 8 7 } \longdiv { 6 8 0 } \\
& \frac { 5 6 1 } { 1 1 9 } \longdiv { 1 8 7 1 } \\
& \frac { 1 1 9 } { 6 8 } \longdiv { 1 1 9 1 } \\
& \frac { 6 8 } { 5 1 } \longdiv { 6 8 } 1 \\
& \frac { 5 1 } { 1 7 } \longdiv { 5 1 } 3 \\
& \begin{array}{r}
51 \\
\hline \\
\hline
\end{array}
\end{aligned}
$$

\therefore Maximum length of each piece $=17$ litres
7. HCF of 250 and 75

$$
\begin{aligned}
& 7 5 \longdiv { 2 5 0 } 3 \\
& \frac{-225}{25) 75} \\
& \frac{75}{\times}
\end{aligned}
$$

\therefore No of square shaped handkerchiefs $=25$
8. HCF of 126,112 and 84

$2 8 \longdiv { 1 2 6 4 }$
$\frac{112}{14) 2812}$

HCF $=14$
\therefore Greatest no. of Students $=14$
9. HCF of 33 m and 14.30 m or HCF of 3300 cm and 1430 cm
$1 4 3 0 \longdiv { 3 3 0 0 } 2$

$$
\begin{aligned}
& \frac { 2 8 6 0 } { 4 4 0 } \longdiv { 1 4 3 0 / 3 } \\
& \frac{1320}{110} \sqrt{440 / 4} \\
& \\
& \\
& \\
& \frac{440}{x}
\end{aligned}
$$

\therefore Side of greatest square tile $=110 \mathrm{~cm}=1 \mathrm{~m} 10 \mathrm{~cm}$

1. (a) | 2 | 4, | 6 |
| :--- | :--- | :--- |
| 2 | 2, | 3 |
| 3 | 1, | 3 |
| | 1, | 1 |

$$
\mathrm{LCM}=2 \times 2 \times 3=12
$$

(b)

2	6,	8
2	3,	4
2	3,	2
3	3,	1
	1,	1

LCM $=2 \times 2 \times 2 \times 3=24$

(c) | 2 | 6, | 10 |
| :--- | :--- | :--- |
| 3 | 3, | 5 |
| 5 | 1, | 5 |
| | 1, | 1 |

LCM $=2 \times 3 \times 5=30$

(d) | 2 | 8, | 10 |
| :--- | :--- | :--- |
| 2 | 4, | 5 |
| 2 | 2, | 5 |
| 5 | 1, | 5 |
| | 1, | 1 |

$$
\mathrm{LCM}=2 \times 2 \times 2 \times 5=40
$$

(e) | 2 | 8, | 12 |
| ---: | ---: | :--- |
| 2 | 4, | 6 |
| 2 | 2, | 3 |
| 3 | 1, | 3 |
| | 1, | 1 |

Mathematics (3, 4 and 5)

$$
\text { LCM }=2 \times 2 \times 2 \times 3=24
$$

(148)

(f) to (o) : Do it yourself.

(p) | 5 | $25,40,60$ |
| :--- | :--- |
| 4 | $5,8,12$ |
| | $5,2,3$ |\quad LCM $=2 \times 3 \times 4 \times 5 \times 5=600$

(q)

7	28,42,	63
3	4,	6,
2	4,	2,
	2,	1,

(r) 5 40,45, 60

(s) | 2 | $24,36,54$ |
| :--- | :--- |
| 3 | $12,18,27$ |
| 3 | 4, |
| 2 | 4, |
| | 2, |
| | 1, |$\quad \begin{aligned} & \text { LCM }=2 \times 2 \times 2 \times 3 \times 3 \times 3=216\end{aligned}$

(t) $15 |$| $150,45,75$ | |
| :--- | :--- |
| | $2,3,5$ |
| $L C M$ | $=2 \times 3 \times 5 \times 15=450$ |

(\mathbf{u}) to $\mathbf{(y)}$: Do it yourself.
2.

18	18,25
25	1,25
	1,1

3. LCM of 20,36 and 45

2	$20,36,45$
2	$10,18,45$
5	$5,9,45$
9	$1,9,9$
	$1,1,1$

4. LCM of 21,35 and 63

7	$21,35,63$
3	3,
	1,

Required no. $=$ their LCM +8

$$
\begin{aligned}
& =315+8 \\
& =323
\end{aligned}
$$

5. LCM of 16,25 and 40

4	16,25,
2	4,
5	25,
2,	25,
	2,

LCM $=2 \times 2 \times 4 \times 5 \times 5=400$
\therefore Required no. $=$ their LCM +5

$$
\begin{aligned}
& =400+5 \\
& =405
\end{aligned}
$$

EXERCISE 5.4

1. (a) First we find the HCF of $90,120,150$
$9 0 \longdiv { 1 2 0 } 1$
$\frac{-90}{30) 9073}$
$3 0 \longdiv { 1 5 0 } 5$
$\frac{150}{x}$

$$
\frac{90}{\times}
$$

HCF $=30$
\therefore To Find LCM of 90, 120, 150 we divide all these nos. by 30 .

30	$90,120,150$
$3,4,5$	
LCM $=30 \times 3 \times 4 \times 5=1800$	

(b) HCF of $126,144,180$

HCF = 18

so, | 18 | 126,144, | 180 | |
| :--- | :--- | :--- | :--- |
| 2 | 7, | 8, | 10 |
| | 7, | 4, | 5 |

LCM $=18 \times 2 \times 7 \times 4 \times 5=5040$
(c) HCF of $192,216,336$

192 $\longdiv { 2 1 6 } 1$
$\frac{192}{2 4 \longdiv { 1 9 2 } 8}$
$\frac{192}{x}$
HCF $=24$

so, | 24 | $192,216,336$ | | |
| :---: | :---: | :---: | :---: |
| 2 | 8, | 9, | 14 |
| | 4, | 9, | 7 |

LCM $=24 \times 2 \times 4 \times 9 \times 7=12096$
(d) HCF of $225,300,375$
$2 2 5 \longdiv { 3 0 0 } 1$
$7 5 \longdiv { 3 7 5 } 5$
$\frac { 2 2 5 } { 7 5 } \longdiv { 2 2 5 3 }$
$\frac{225}{x}$
$\mathrm{HCF}=75$

75	$225,300,375$	
2	3,	4,

$$
\mathrm{LCM}=75 \times 3 \times 4 \times 5=4500
$$

(e) to (j): Do it yourself.
2. Product of two nos. $=\mathrm{HCF} \times \mathrm{LCM}$

$$
\begin{aligned}
150 & =3 \times \mathrm{LCM} \\
\mathrm{LCM} & =\frac{150}{3}=50
\end{aligned}
$$

3.

$$
\begin{aligned}
3375 & =15 \times \mathrm{LCM} \\
\mathrm{LCM} & =\frac{3375}{15}=225 \\
480 & =\mathrm{HCF} \times 80 \\
\mathrm{HCF} & =\frac{480}{80}=6
\end{aligned}
$$

5.

$$
\begin{aligned}
& 25 \times \text { other no. }=5 \times 200 \\
& \text { other no }=\frac{5 \times 200}{25}=40
\end{aligned}
$$

6. LCM of $10,15,20$

5	10,	15,	20
2	2,	3,	4
	1,	3,	2

$$
\begin{aligned}
\mathrm{LCM} & =2 \times 2 \times 3 \times 5 \\
& =60 \text { minutes } \\
\text { or } & =1 \text { hour }
\end{aligned}
$$

The bells will next ring together at

$$
\begin{gathered}
7: 00 \text { a.m. }+1 \text { hour } \\
=8.00 \text { a.m }
\end{gathered}
$$

7. LCM of 25 and 30

5	25,	30
	5,	6

$$
\begin{aligned}
\text { LCM } & =5 \times 5 \times 6 \\
& =150 \text { seconds } \\
& =2 \text { minutes } 30 \text { sec. } .
\end{aligned}
$$

They will light again together at 6 a.m. $+2 \mathrm{~min}+30 \mathrm{sec}$

$$
=6: 2: 30
$$

8. LCM of $12,18,30$

2	12,	18	30
3	6,	9,	15
	2,	3,	5

$$
\begin{aligned}
\mathrm{LCM} & =2 \times 2 \times 3 \times 3 \times 5 \\
& =180
\end{aligned}
$$

So, min no. of marbles $=180$ marbles
9. LCM of $30,36,42$

3	30,	36,	42
2	10,	12,	14
	5,	6,	7

$$
\begin{aligned}
\mathrm{LCM} & =2 \times 3 \times 5 \times 6 \times 7 \\
& =1260 \mathrm{~cm} \\
\text { or } & =12.60 \mathrm{~m} \\
\text { or } & =12 \mathrm{~m} 60 \mathrm{~cm}
\end{aligned}
$$

10. LCM of $45,50,54$

9	45,50,	54
5	5,50,	6
2	1,	10,
	1,	5,

$$
\text { LCM }=2 \times 3 \times 5 \times 5 \times 9
$$

$$
=1350 \mathrm{sec}
$$

To meet again double the circle
So, $1350 \times 2=2700 \mathrm{sec}$

$$
=45 \text { minutes }
$$

6. OPERATIONS ON COMMON FRACTIONS

EXERCISE 6.1

1. (a) $\frac{3}{7}+\frac{5}{14}=\frac{3 \times 2+5 \times 1}{14}=\frac{6+5}{14}=\frac{11}{14}$
(b) $\frac{1}{8}+\frac{5}{32}=\frac{4 \times 1+5 \times 1}{32}=\frac{4+5}{32}=\frac{9}{32}$
(c) $\frac{7}{12}+\frac{13}{18}=\frac{7 \times 3+13 \times 2}{36}=\frac{21+26}{36}=\frac{47}{36}=1 \frac{11}{36}$
(d) $\frac{3}{10}+\frac{2}{15}+\frac{7}{18}=\frac{3 \times 9+2 \times 6+7 \times 5}{90}$

$$
\begin{aligned}
& =\frac{27+12+35}{90} \\
& =\frac{74}{90}
\end{aligned}
$$

(e) $1 \frac{1}{2}+1 \frac{2}{3}+1 \frac{1}{4}=\frac{3}{2}+\frac{5}{3}+\frac{5}{4}$

$$
\begin{aligned}
& =\frac{6 \times 3+5 \times 4+5 \times 3}{12} \\
& =\frac{18+20+15}{12} \\
& =\frac{53}{12}=4 \frac{5}{12}
\end{aligned}
$$

(f) $1 \frac{3}{8}+\frac{11}{12}+1 \frac{5}{6}=\frac{11}{8}+\frac{11}{12}+\frac{11}{6}$

$$
\begin{aligned}
& =\frac{11 \times 3+11 \times 2+11 \times 4}{24} \\
& =\frac{33+22+44}{24} \\
& =\frac{99}{24}=\frac{33}{8}=4 \frac{1}{8}
\end{aligned}
$$

(g) $2 \frac{3}{4}+1 \frac{2}{3}+\frac{4}{5}=\frac{11}{4}+\frac{5}{3}+\frac{4}{5}$

$$
\begin{aligned}
& =\frac{15 \times 11+5 \times 20+4 \times 12}{60} \\
& =\frac{165+100+48}{60}
\end{aligned}
$$

$$
=\frac{313}{60}=5 \frac{13}{60}
$$

(g) $\frac{3}{4}+\frac{1}{6}+\frac{7}{8}=\frac{6 \times 3+1 \times 4+7 \times 3}{24}$

$$
\begin{aligned}
& =\frac{18+4+21}{24} \\
& =\frac{43}{24}=1 \frac{19}{24}
\end{aligned}
$$

(i) $1 \frac{8}{15}+2 \frac{7}{10}+\frac{3}{5}=\frac{23}{15}+\frac{27}{10}+\frac{3}{5}$

$$
\begin{aligned}
& =\frac{23 \times 2+27 \times 3+3 \times 6}{30} \\
& =\frac{46+81+18}{30} \\
& =\frac{145}{30}=\frac{29}{6}=4 \frac{5}{6}
\end{aligned}
$$

(j) $2 \frac{1}{4}+1 \frac{3}{5}+2 \frac{1}{2}=\frac{9}{4}+\frac{8}{5}+\frac{5}{2}$

$$
=\frac{9 \times 5+8 \times 4+5 \times 10}{20}
$$

$$
=\frac{45+32+50}{20}
$$

$$
=\frac{127}{20}=6 \frac{7}{20}
$$

2. (a) $\frac{7}{8}-\frac{5}{6}=\frac{7 \times 6-5 \times 8}{48}$

$$
=\frac{42-40}{48}=\frac{2}{48}=\frac{1}{24}
$$

(b) $\frac{3}{4}-\frac{2}{5}=\frac{3 \times 5-2 \times 4}{20}$

$$
=\frac{15-8}{20}=\frac{7}{20}
$$

(c) $\frac{5}{6}-\frac{4}{5}=\frac{5 \times 5-4 \times 6}{30}$

$$
=\frac{25-24}{30}=\frac{1}{30}
$$

(d) $\frac{3}{4}-\frac{2}{3}=\frac{3 \times 3-2 \times 4}{12}$

$$
=\frac{9-8}{12}=\frac{1}{12}
$$

(e) $\frac{7}{12}-\frac{3}{8}=\frac{7 \times 2-3 \times 3}{24}$

$$
=\frac{14-9}{24}=\frac{5}{24}
$$

(f) $2 \frac{1}{3}-1 \frac{3}{4}=\frac{7}{3}-\frac{7}{4}$

$$
\begin{aligned}
& =\frac{7 \times 4-7 \times 3}{12} \\
& =\frac{28-21}{12}=\frac{7}{12}
\end{aligned}
$$

(g) $4 \frac{3}{4}-3 \frac{5}{6}=\frac{19}{4}-\frac{23}{6}$

$$
=\frac{19 \times 6-23 \times 4}{24}
$$

$$
=\frac{114-92}{24}=\frac{22}{24}=\frac{11}{12}
$$

(h) $4 \frac{3}{5}-2 \frac{7}{15}=\frac{23}{5}-\frac{37}{15}$

$$
\begin{aligned}
& =\frac{23 \times 3-37 \times 1}{15} \\
& =\frac{69-37}{15}=\frac{32}{15}=2 \frac{2}{15}
\end{aligned}
$$

(i) $7-4 \frac{2}{5}=\frac{7}{1}-\frac{22}{5}$

$$
\begin{aligned}
& =\frac{7 \times 5-22 \times 1}{5} \\
& =\frac{35-22}{5}=\frac{13}{5}=2 \frac{3}{5}
\end{aligned}
$$

(j) $5 \frac{3}{5}-2 \frac{3}{4}=\frac{28}{5}-\frac{11}{4}$

$$
\begin{aligned}
& =\frac{28 \times 4-11 \times 5}{20} \\
& =\frac{112-55}{20}=\frac{57}{20}=2 \frac{17}{20}
\end{aligned}
$$

EXERCISE 6.2

1. (a) $5 \times \frac{1}{2}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}$

$$
=\frac{1+1+1+1+1}{2}=\frac{5}{2}
$$

(b) $4 \times \frac{1}{3}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}$

$$
=\frac{1+1+1+1}{3}=\frac{4}{3}
$$

(c) $6 \times \frac{2}{7}=\frac{2}{7}+\frac{2}{7}+\frac{2}{7}+\frac{2}{7}+\frac{2}{7}+\frac{2}{7}$

$$
=\frac{2+2+2+2+2+2}{7}=\frac{12}{7}=1 \frac{5}{7}
$$

(d) $7 \times \frac{2}{3}=\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}$

$$
=\frac{2+2+2+2+2+2+2}{3}=\frac{14}{3}=4 \frac{2}{3}
$$

(e) $8 \times \frac{3}{5}=\frac{3}{5}+\frac{3}{5}+\frac{3}{5}+\frac{3}{5}+\frac{3}{5}+\frac{3}{5}+\frac{3}{5}+\frac{3}{5}$

$$
=\frac{3+3+3+3+3+3+3+3}{5}=\frac{24}{5}=4 \frac{4}{5}
$$

2. $3 \times \frac{3}{4}=\frac{9}{4}=2 \frac{1}{4}$
3. (a) $3 \times \frac{5}{6}=\frac{15}{6}=\frac{5}{2}=2 \frac{1}{2}$
(b) $4 \times \frac{3}{8}=\frac{12}{8}=\frac{3}{2}=1 \frac{1}{2}$
(c) $6 \times \frac{2}{3}=\frac{12}{3}=4$
(d) $7 \times \frac{3}{14}=\frac{3}{2}=1 \frac{1}{2}$
(e) $16 \times \frac{3}{64}=\frac{3}{4}$
4. (a) $4 \times 1 \frac{1}{3}=4 \times \frac{4}{3}=\frac{16}{3}=5 \frac{1}{3}$
(b) $3 \times 1 \frac{5}{6}=3 \times \frac{11}{6}=\frac{11}{2}=5 \frac{1}{2}$
(c) $4 \times 2 \frac{1}{2}=4 \times \frac{5}{2}=2 \times 5=10$
(d) $8 \times 3 \frac{1}{3}=8 \times \frac{10}{3}=\frac{80}{3}=26 \frac{2}{3}$
(e) $3 \times 1 \frac{1}{9}=3 \times \frac{10}{3}=\frac{30}{9}=\frac{10}{3}=3 \frac{1}{3}$
5. (a) $\frac{2}{3} \times 5=\frac{10}{3}=3 \frac{1}{3}$
(b) $2 \frac{1}{2} \times 5=\frac{5}{2} \times 5=\frac{25}{2}=12 \frac{1}{2}$
(c) $3 \frac{1}{4} \times 8=\frac{13}{4} \times 8=13 \times 2=26$
(d) $5 \frac{2}{3} \times 6=\frac{17}{3} \times 6=17 \times 2=34$
(e) $4 \frac{2}{15} \times 20=\frac{62}{15} \times 20=\frac{248}{3}=82 \frac{2}{3}$

EXERCISE 6.3

1. (a) $\frac{1}{2}$ of $4=\frac{1}{2} \times 4=2$
(b) $\frac{1}{3}$ of $5=\frac{1}{3} \times 5=\frac{5}{3}=1 \frac{2}{3}$
(c) $\frac{2}{3}$ of $\frac{4}{5}=\frac{2}{3} \times \frac{4}{5}=\frac{8}{15}$
(d) $\frac{3}{4}$ of $\frac{5}{6}=\frac{3}{4} \times \frac{5}{6}=\frac{5}{8}$
(e) $\frac{2}{3}$ of $\frac{3}{4}=\frac{2}{3} \times \frac{3}{4}=\frac{1}{2}$
(f) $\frac{2}{5} \times \frac{7}{8}=\frac{7}{20}$
(g) $\frac{3}{4} \times \frac{4}{5}=\frac{3}{5}$
(h) $\frac{3}{5} \times \frac{7}{8}=\frac{21}{40}$
(i) $\frac{8}{13} \times \frac{26}{17}=\frac{8 \times 2}{17}=\frac{16}{17}$
(j) $\frac{5}{7} \times \frac{35}{13}=\frac{5 \times 5}{13}=\frac{25}{13}=1 \frac{12}{13}$
2. (a) $\frac{3}{4} \times \frac{8}{9} \times \frac{27}{32}=\frac{3 \times 8 \times 27^{3}}{4 \times 9 \times 32_{4}}$

$$
=\frac{3 \times 3}{4 \times 4}=\frac{9}{16}
$$

(b) $\frac{2}{3} \times \frac{9}{16} \times \frac{8}{32}=\frac{2 \times 9 \times 8}{3 \times 16_{2} \times 27_{3}}$

$$
=\frac{1}{3 \times 3}=\frac{1}{9}
$$

(c) $\frac{12}{25} \times \frac{75}{48} \times \frac{17}{35}=\frac{12 \times 75^{3} \times 17}{25 \times 48 \times 35}$

$$
=\frac{3 \times 17}{4 \times 35}=\frac{51}{140}
$$

(d) $\frac{21}{52} \times \frac{39}{56} \times \frac{24}{27}=\frac{21^{7} \times 39^{3} \times 24^{3}}{52_{4} \times 56_{7} \times 27_{9}}$

$$
=\frac{7 \times 3 \times 3}{4 \times 7 \times 9}=\frac{3 \times 3}{4 \times 9}=\frac{1}{4}
$$

3. (a) $1 \frac{1}{4} \times 2 \frac{2}{5}=\frac{5}{4} \times \frac{12}{5}$

$$
=\frac{5 \times 12^{3}}{4 \times 5}=3
$$

(b) $3 \frac{3}{8} \times 4 \frac{4}{9}=\frac{27}{8} \times \frac{40}{9}$

$$
=\frac{27^{3} \times 40^{5}}{8 \times 9}=3 \times 5=15
$$

(c) $5 \frac{1}{7} \times 5 \frac{4}{9}=\frac{36}{7} \times \frac{49}{9}$

$$
=\frac{36^{3} \times 49^{7}}{4 \times 9}=4 \times 7=28
$$

(d) $2 \frac{1}{12} \times 2 \frac{2}{9}=\frac{25}{12} \times \frac{20^{5}}{9}$

$$
=\frac{25 \times 5}{3 \times 9}=\frac{125}{27}=4 \frac{17}{27}
$$

(e) $2 \frac{6}{7} \times 2 \frac{3}{16} \times 1 \frac{3}{5}=\frac{20}{7} \times \frac{35}{16} \times \frac{8}{5}$

$$
=\frac{20 \times 35^{7} \times 8}{7 \times 16_{2} \times 5}=\frac{20}{2}=10
$$

(f) $2 \frac{2}{5} \times 2 \frac{2}{3} \times 8 \frac{1}{3}=\frac{12}{5} \times \frac{8}{3} \times \frac{25}{3}$

$$
\begin{aligned}
& =\frac{12^{4} \times 8 \times{ }^{5} 25}{5 \times 3 \times 3} \\
& =\frac{4 \times 8 \times 5}{3}=\frac{160}{3}=53 \frac{1}{3}
\end{aligned}
$$

(g) $1 \frac{11}{15} \times 1 \frac{5}{13} \times \frac{25}{54}=\frac{26}{15} \times \frac{18}{13} \times \frac{25}{54}$

$$
\begin{aligned}
& =\frac{26^{2} \times 18 \times{ }^{5} 25}{15_{3} \times 13 \times{ }_{3} 54} \\
& =\frac{2 \times 5}{3 \times 3}=\frac{10}{9}=1 \frac{1}{9}
\end{aligned}
$$

(h) $2 \frac{4}{25} \times 1 \frac{7}{48} \times 1 \frac{4}{11}=\frac{54}{25} \times \frac{55}{48} \times \frac{15}{11}$

$$
\begin{aligned}
& =\frac{54^{9} \times 55^{5} \times{ }^{3} 15}{25_{5} \times 48_{8} \times 11}=\frac{9 \times 5 \times 3}{5 \times 8} \\
& =\frac{9 \times 3}{8}=\frac{27}{8}=3 \frac{3}{8}
\end{aligned}
$$

EXERCISE 6.4

1. (a) $\frac{1}{7}$
(b) $\frac{1}{8}$
(c) $\frac{1}{6}$
(d) $\frac{1}{10}$
(e) 4 (f) 9
(g) $\frac{20}{13}$
(h) $\frac{14}{3}$
(i) 1 (j) 1
(k) 1 (l) 1 .
2. (a) Multiplicative inverse of $15=\frac{1}{15}$
(b) Multiplicative inverse of $\frac{1}{13}=13$
(c) Multiplicative inverse of $\frac{10}{3}=\frac{3}{10}$
(d) Multiplicative inverse of $3 \frac{1}{5}\left(\frac{16}{5}\right)=\frac{5}{16}$
(e) Multiplicative inverse of $6 \frac{4}{7}\left(\frac{46}{7}\right)=\frac{7}{46}$
3. (a) $\frac{1}{4} \div 3=\frac{1}{4} \times \frac{1}{3}=\frac{1}{12}$
(b) $\frac{1}{5} \div 5=\frac{1}{5} \times \frac{1}{5}=\frac{1}{25}$
(c) $\frac{1}{6} \div 3=\frac{1}{6} \times \frac{1}{3}=\frac{1}{18}$
(d) $\frac{3}{4} \div 6=\frac{3}{4} \times \frac{1}{6}=\frac{3}{24}=\frac{1}{8}$
(e) $\frac{10}{3} \div 5=\frac{10}{3} \times \frac{1}{5}=\frac{2}{3}$
(f) $2 \frac{1}{4} \div 9=\frac{9}{4} \times \frac{1}{9}=\frac{1}{4}$
(g) $3 \frac{1}{3} \div 5=\frac{10}{3} \times \frac{1}{5}=\frac{2}{3}$
(h) $6 \frac{1}{4} \div 25=\frac{25}{4} \times \frac{1}{25}=\frac{1}{4}$
(i) $5 \frac{2}{3} \div 34=\frac{17}{3} \times \frac{1}{34}=\frac{1}{6}$
(j) $4 \frac{3}{7} \div 62=\frac{31}{7} \times \frac{1}{62}=\frac{1}{14}$
4. (a) $\frac{3}{4}$ by $3=\frac{3}{4} \times \frac{1}{3}=\frac{1}{4}$
(b) $\frac{8}{13}$ by $4=\frac{8}{13} \times \frac{1}{4}=\frac{2}{13}$
(c) $\frac{26}{11}$ by $13=\frac{26}{11} \times \frac{1}{13}=\frac{2}{11}$
(d) $\frac{28}{19}$ by $7=\frac{28}{19} \times \frac{1}{7}=\frac{4}{19}$
(e) $\frac{8}{7}$ by $16=\frac{8}{7} \times \frac{1}{16}=\frac{1}{14}$

EXERCISE 6.5

1. (a) $3 \div \frac{3}{7}=3 \times \frac{7}{3}=7$
(b) $6 \div \frac{1}{6}=3 \times 6=36$
(c) $16 \div \frac{8}{9}=16 \times \frac{9}{8}=18$
(d) $15 \div \frac{3}{4}=15 \times \frac{4}{3}=20$
(e) $35 \div \frac{14}{3}=35 \times \frac{3}{14}=\frac{5 \times 3}{2}=\frac{15}{2}=7 \frac{1}{2}$
(f) $42 \div 3 \frac{1}{2}=42 \div \frac{7}{2}$

$$
=42 \times \frac{2}{7}=12
$$

(g) $45 \div 7 \frac{1}{2}=45 \div \frac{15}{2}$

$$
=45 \times \frac{2}{15}=3 \times 2=6
$$

(h) $25 \div 3 \frac{3}{4}=25 \div \frac{15}{4}$

$$
=25 \times \frac{4}{15}=\frac{5 \times 4}{3}=\frac{20}{3}=6 \frac{2}{3}
$$

(i) $12 \div 2 \frac{2}{3}=12 \div \frac{8}{3}$

$$
=12 \times \frac{3}{8}=\frac{3 \times 3}{2}=\frac{9}{2}=4 \frac{1}{2}
$$

(j) $49 \div 6 \frac{1}{8}=49 \div \frac{49}{8}$

$$
=49 \times \frac{8}{49}=8
$$

2. (a) $\frac{1}{3} \div \frac{1}{5}=\frac{1}{3} \times 5=\frac{5}{3}=1 \frac{2}{3}$
(b) $\frac{1}{2} \div \frac{1}{4}=\frac{1}{2} \times 4=2$
(c) $\frac{9}{14} \div \frac{3}{35}=\frac{95}{14}_{2}^{3} \times \frac{35^{5}}{3}=\frac{3 \times 5}{2}=\frac{15}{2}=7 \frac{1}{2}$
(d) $\frac{7}{11} \div \frac{42}{55}=\frac{x^{2}}{17} \times \frac{55^{5}}{4 x}=\frac{5}{6}$
(e) $\frac{17}{3} \div \frac{1}{6}=\frac{17}{3} \times 6=34$
3. (a) $2 \frac{1}{5} \div \frac{1}{10}=\frac{11}{5} \div \frac{1}{10}$

$$
=\frac{11}{5} \times 10=22
$$

(b) $4 \frac{2}{3} \div \frac{1}{9}=\frac{14}{3} \div \frac{1}{9}$

$$
=\frac{14}{3} \times \frac{9}{1}=42
$$

(c) $8 \frac{4}{5} \div \frac{4}{25}=\frac{44}{5} \div \frac{4}{25}$

$$
\begin{aligned}
& =\frac{44^{11}}{5} \times \frac{25^{5}}{4} \\
& =11 \times 5=55
\end{aligned}
$$

(d) $10 \frac{2}{5} \div 3 \frac{1}{4}=\frac{52}{5} \div \frac{13}{4}$

$$
\begin{aligned}
& =\frac{52^{4}}{5} \times \frac{4}{13} \\
& =\frac{16}{5}=3 \frac{1}{5}
\end{aligned}
$$

(e) $6 \frac{5}{14} \div 5 \frac{9}{16}=\frac{89}{14} \div \frac{89}{16}$

$$
\begin{aligned}
& =\frac{89}{14} \times \frac{16^{8}}{89} \\
& =\frac{8}{7}=1 \frac{1}{7}
\end{aligned}
$$

4. (a) $\frac{4}{5}$
(b) 1
(c) $5 \frac{1}{2}$
(d) 0
(e) 1
(f) 1 (g) $7 \frac{5}{11}$
(h) $16 \frac{2}{3}$

EXERCISE 6.6

1. Weight of empty tin $=16 \frac{1}{5}-14 \frac{3}{4}$

$$
\begin{aligned}
& =\frac{81}{5}-\frac{59}{4}=\frac{(81 \times 4)-(59 \times 5)}{20} \\
& =\frac{324-295}{20}=\frac{29}{20}=1 \frac{9}{20}
\end{aligned}
$$

2. Total cloth $=7$ metres

$$
\begin{aligned}
& \text { Used for curtain }=2 \frac{1}{2} \text { metres } \\
& \text { Used for sheet }=1 \frac{3}{5} \text { metres } \\
& \text { Cloth left }=7-\left(2 \frac{1}{2}+1 \frac{3}{5}\right) \\
& =7-\left(\frac{5}{2}+\frac{8}{5}\right) \\
& =7-\left(\frac{25+16}{10}\right) \\
& =7-\left(\frac{41}{10}\right)
\end{aligned}
$$

$$
=\frac{70-41}{10}=\frac{29}{10}=2 \frac{9}{10} \text { metres }
$$

3. $\frac{2}{5}$ of a can for $=1$ wall
or 1 wall needed $=\frac{2}{5}$ of a can
So, 10 walls needed $=\frac{2}{5} \times 10=4$ cans
4. 1 bowl $=9$ servings

$$
\begin{aligned}
\frac{3}{4} \text { bowl } & =\frac{9}{3 / 4} \text { servings } \\
& =\frac{4}{3} \times 9=12 \text { servings }
\end{aligned}
$$

5. $5 \frac{1}{9} l$ or $\frac{46}{9}$ litre kerosene costs $=₹ 92$

Then 1 litre kerosene costs $=₹ \frac{92}{\frac{46}{9}}$

$$
=₹\left(92^{2} \times \frac{9}{46}\right)=₹ 18
$$

6. After reading $\frac{2}{3}$ of a book, 60 pages are left.

That means $\frac{1}{3}$ of book $=60$ pages

$$
\text { or } 1 \text { book }=60 \times 3=180 \text { pages }
$$

7. 1 metre of cloth costs $=₹ 32 \frac{1}{2}=₹ \frac{65}{2}$
$\therefore 3 \frac{1}{5}\left(\frac{16}{5}\right)$ metre cloth costs $=₹\left(\frac{65}{2} \times \frac{16}{5}\right)$

$$
=₹(13 \times 8)=₹ 104
$$

8. Andy ate $=\frac{3}{4}$ of $\frac{7}{8}$

$$
=\frac{3}{4} \times \frac{7}{8}=\frac{21}{32} \text { part }
$$

9. No. of shirts $=20 \frac{1}{4} \div 2 \frac{1}{4}$

$$
\begin{aligned}
& =\frac{81}{4} \div \frac{9}{4} \\
& =\frac{81}{4} \times \frac{4}{9}=9 \text { shirts }
\end{aligned}
$$

10. Total land $=1$

Sold $\quad=\frac{1}{3}$
So, remaining $=1-\frac{1}{3}=\frac{2}{3}$
Man gave $\frac{1}{3}$ of (remaining) to his son and daughter each.
That means $\frac{1}{3}$ of $\frac{2}{3}=\frac{1}{3} \times \frac{2}{3}=\frac{2}{9}$
i.e. $\frac{2}{9}$ to son and $\frac{2}{9}$ to daughter

So, land left with him $=1-\frac{1}{3}-\frac{2}{9}-\frac{2}{9}$

$$
\begin{aligned}
& =1-\left(\frac{1}{3}+\frac{2}{9}+\frac{2}{9}\right) \\
& =1-\left(\frac{3+2+2}{9}\right) \\
& =1-\frac{7}{9}
\end{aligned}
$$

$$
=\frac{9-7}{9}=\frac{2}{9}
$$

11. Other fraction $=15 \frac{3}{10} \div 6 \frac{4}{5}$

$$
\begin{aligned}
& =\frac{153}{10} \div \frac{34}{5}=\frac{153^{9}}{10} \times \frac{5}{34} \\
& =\frac{9}{4}=2 \frac{1}{4}
\end{aligned}
$$

EXERCISE 6.7

1. (a) $\frac{79}{91}=\frac{10}{13}=10: 13$
(b) $\frac{80 \mathrm{~cm}}{2 \mathrm{~m}}=\frac{80 \mathrm{~cm}}{200 \mathrm{~cm}}=\frac{2}{5}=2: 5$
(c) $\frac{75 \mathrm{~cm}}{1 \mathrm{~m}}=\frac{75 \mathrm{~cm}}{100 \mathrm{~cm}}=\frac{3}{4}=3: 4$
(d) $\frac{500 \mathrm{~g}}{3 \mathrm{~kg}}=\frac{500 \mathrm{~g}}{3000 \mathrm{~g}}=\frac{1}{6}=1: 6$
(e) $\frac{1 / 500 \mathrm{ml}}{2 l}=\frac{1500 \mathrm{ml}}{2000 \mathrm{ml}}=\frac{15}{20}=\frac{3}{4}=3: 4$
(f) $\frac{15 \mathrm{~min}}{1 \text { hour }}=\frac{15 \mathrm{~min}}{60 \mathrm{~min}}=\frac{1}{4}=1: 4$
(g) $\frac{1 \mathrm{~kg}}{400 \mathrm{~g}}=\frac{1000 \mathrm{~g}}{400 \mathrm{~g}}=\frac{10}{4}=5: 2$
(h) $\frac{1 \mathrm{~m}}{70 \mathrm{~cm}}=\frac{100 \mathrm{~cm}}{70 \mathrm{~cm}} \quad=\frac{10}{7}=10: 7$
2. \quad Ratio $=\frac{\text { No. of boys }}{\text { No. of girls }}=\frac{20}{24}=\frac{5}{6}=5: 6$
3. Ratio of heights $=\frac{9 \mathrm{~m}}{12 \mathrm{~m}} \quad=\frac{3}{4}=3: 4$
4. Earings = ₹ 20,000

Savings= ₹5000
\therefore Expenditures $=₹ 20,000-₹ 5000=₹ 15000$
(a) Ratio $=\frac{\text { earning }}{\text { saving }} \quad=\frac{20,000}{5,000}=\frac{4}{1} \quad=4: 1$
(b) Ratio $=\frac{\text { saving }}{\text { expenditure }}=\frac{5,000}{15,000}=\frac{1}{3}=1: 3$
5. Ratio $=\frac{\text { no. of teachers }}{\text { no. of students }}=\frac{57}{1900}=\frac{3}{100}=3: 100$
6. Games won $=6$ games

Games lost = 3 games
Total games = 9 games
(a) Ratio $=\frac{\text { games lost }}{\text { games won }}=\frac{3}{6}=\frac{1}{2}=1: 2$
(b) Ratio $=\frac{\text { games won }}{\text { games played }}=\frac{6}{9}=\frac{2}{3}=2: 3$
7. (a) Ratio $=\frac{\text { No. of girls }}{\text { No. of boys }}=\frac{400}{350}=\frac{8}{7}=8: 7$
(b) Ratio $=\frac{\text { No. of boys }}{\text { No. of girls }} \quad=\frac{350}{400}=\frac{7}{8}=7: 8$
8. (a) Length of room $=2 \times$ its breadth
$\frac{\text { Length of room }}{\text { Breadth of room }}=\frac{2}{1}=2: 1$
(b) No. of girls $=3 \times$ No. of boys

$$
=\frac{\text { No. of girls }}{\text { No. of boys }}=\frac{3}{1}=3: 1
$$

9. Ratio $=3: 2$

Sum of terms $=3+2=5$
Kate's share $=\frac{3}{5} \times(₹ 5000)=3000$
Celia's share $=\frac{2}{5} \times(₹ 5000)=₹ 2000$
10. \quad Ratio $=\frac{\text { No. of holidays }}{\text { No. of days in year }}$

$$
=\frac{146}{365}=\frac{2}{5}=2: 5
$$

7. DECIMAL FRACTIONS

EXERCISE 7.1

1. (a) $8+0.7+0.09+0.005 ; 8+\frac{7}{10}+\frac{9}{100}+\frac{5}{1000}$
(b) $20+7+0.03+0.004 ; 20+7+\frac{3}{100}+\frac{5}{1000}$
(c) $20+5+0.9+0.006 ; 20+5+\frac{9}{10}+\frac{6}{1000}$
(d) $200+80+5+0.8+0 \cdot 08 ; 200+80+5+\frac{8}{10}+\frac{8}{100}$
(e) $90+8+0.3 ; 90+8+\frac{3}{10}$
2. (a) 5.36 (b) 7.204 (c) 4.072 (d) 0.976 (e) 43.57 (f) 29.411
3. (a) 7.591 (b)2.309 (c) 52.097 (d) 30.07 (e) 64.009 (f) 0.793
4. (a) $0.5=0.50=0.500$
(b) $1.3=1.30=1.300$
(c) $34.2=34.20=34 \cdot 200$
(d) $0.3=0.30=0.300$
(e) $3.7=3 \cdot 70=3.700$
(f) $68.3=68 \cdot 30=68 \cdot 300$
5. (a) $7.40 ; 8.26 ; 9.30$
(b) $24.400 ; 2.830 ; 0.734$
(c) 2.680; 4.900; 7.072
(d) 9.20; 23.50; 0.12
(e) $8.360 ; 7.500 ; 2.003$
(f) 12.840; 615312; 1.700
6. (a) $50.04<50.4$
(b) $7.7 \quad>7.007$
(c) $7.3 \quad>7.268$
(d) $0.4 \quad>0.14$
(e) $9.99<9.999$
(f) $5.081 \gg 5.08$
(g) $3.4 \cong 3.400$
(h) $0.2 \gg 1.999$
(i) $0.76 \quad 0.760$
7. (a) $1.019 ; 1.09 ; 1.9 ; 1.91$
(b) 2.37;2.7;3.01; 3.1
(c) $5 ; 5.12 ; 5.21 ; 5.3$
(d) $9.09 ; 9.9 ; 10 ; 10.01$
8. (a) $2.25 ; 2.05 ; 0.25 ; 0.05$
(b) $2.91 ; 2.9 ; 2.09 ; 2.019$
(c) $1.1 ; 1.09 ; 1.01 ; 0.99$
(d) 19.99; 1.999;1.099;0.999

EXERCISE 7.2

1. (a) 0.3
(b) 0.52
(c) 0.09
(d) 0.25
(e) 0.137
(f) 1.17
(g) 2.009
(h) 56.5
(i) 1.203
(j) 15.17
2. (a) $\frac{4}{10}$
(b) $\frac{35}{100}$
(c) $\frac{742}{1000}$
(d) $1 \frac{3}{100}$
(e) $\frac{4}{100}$
(f) $36 \frac{90}{100}$
(g) $6 \frac{104}{1000}$
(h) $37 \frac{6}{1000}$
(i) $\frac{7}{1000}$
(j) $78 \frac{67}{100}$

EXERCISE 7.3

1. (a) 3.4
2. 9
$\begin{array}{r}+6.7 \\ \hline 16.0 \\ \hline\end{array}$
(d) 7. 25
3. 45
$\begin{array}{r}+12.75 \\ \hline 22.45 \\ \hline\end{array}$
(g) 12.01
4. 10
$\begin{array}{r}1.98 \\ +\quad 1.98 \\ \hline 15.09 \\ \hline\end{array}$
5. (a) 16.10
$\begin{array}{r}-9.25 \\ \hline 6.85 \\ \hline\end{array}$
6. (a) 12.35
$\begin{array}{r}-7.00 \\ \hline 5.35 \\ \hline\end{array}$
(d) $\begin{array}{r}13.10 \\ -10.05 \\ \hline 3.05 \\ \hline\end{array}$
(b) 2.003
0.700
$\begin{array}{r}+16.790 \\ \hline 19.493\end{array}$
(e) $\quad \begin{aligned} & 9.85 \\ & 0.61\end{aligned}$
$\begin{array}{r}0.40 \\ +0.46 \\ \hline 10.86 \\ \hline\end{array}$
(h) $\quad \begin{aligned} & 0 . \\ & 2 .\end{aligned} 901$
$\begin{array}{r}2.920 \\ +0.021 \\ \hline 2.921 \\ \hline\end{array}$
(b) 18.50
$\begin{array}{r}-16.75 \\ \hline 1.75 \\ \hline\end{array}$
(b) $\begin{array}{r}5.37 \\ -\quad 0.75 \\ \hline 4.62 \\ \hline\end{array}$
(e) $\begin{array}{r}8.050 \\ -\quad 4.352 \\ \hline 3.698 \\ \hline\end{array}$
(c) 1.650 1. 605
$\begin{array}{r}16.500 \\ +16.755 \\ \hline 19 .\end{array}$
(f) 00.10
01 . 00
$\begin{array}{r}+11.40 \\ \hline 12.50 \\ \hline\end{array}$
(i) $\begin{array}{r}28.101 \\ 0 . \\ \hline\end{array}$
$\begin{array}{r}61.780 \\ +61.931 \\ \hline 89.9\end{array}$
(c) 7.00
$\begin{array}{r}7.32 \\ -4.68 \\ \hline 2 .\end{array}$
(c) $\begin{array}{r}11.01 \\ -10.11 \\ \hline 0.9 \\ \hline\end{array}$
(f) $\begin{array}{r}203.067 \\ -99.777 \\ \hline 103.283 \\ \hline\end{array}$

EXERCISE 7.4

1. Do it yourself.

Mathematics (3, 4 and 5)
(b)
$\begin{array}{r}4.5 \\ \times \quad 6 \quad 9 \\ \hline 405\end{array}$
$\begin{array}{r}2700 \\ \hline 310.50 \\ \hline\end{array}$
(174)
(c) 0.75

$\begin{array}{r}1500 \\ \hline 18.75 \\ \hline\end{array}$
Teacher Manual
(d)

(f) 25.36
$\begin{array}{r}\times 7.3 \\ \hline 7608\end{array}$
(i)

177520
185.128
1.04
$\times 5.4$
416

3. Given $87 \times 45=3915$
(a) $8.7 \times 4.5=39.15$
(b) $8.7 \times 45=391.5$
(c) $87 \times 4.5=391.5$
(d) $87 \times 0.45=39.15$
(e) $0.87 \times 4.5=3.915$
4. (a) $0.2 \times 0.3 \times 0.5$
$\because 2 \times 3 \times 5=30$
$\therefore 0.2 \times 0.3 \times 0.5=0.030$
(b) $\because 4 \times 5 \times 6=120$
$\therefore 0.4 \times 0.05 \times 0.6=0.0120$
(c) $\because 4 \times 5 \times 3=60$
$\therefore 0.04 \times 0.5 \times 3=0.060$
(d) $\because 7 \times 9 \times 1=63$
$\therefore 0.7 \times 0.9 \times 0.01=0.0063$
5. (a)
 $\frac{44}{4}$ $\frac{0}{44}$ $\frac{44}{x}$ $Q=4.04$
(b)
$8 \longdiv { 1 7 . 0 6 }$
8
$\frac{56}{4}$
$\frac{0}{48}$
$\frac{48}{\times}$
$Q=17.06$
(c) $1 5 \longdiv { 9 . 6 0 6 }$

$$
\frac{90}{9}
$$

$$
\frac{0}{90}
$$

$$
\frac{90}{x}
$$

$$
Q=0.606
$$

(d)
$1 3 \longdiv { 1 . 0 4 } \begin{array} { l } { 1 3 . 5 2 } \\ { 1 3 } \end{array}$
13
5

$$
\begin{array}{ll}
\frac{0}{52} \\
\frac{52}{\times} & Q=1.04 \\
\hline
\end{array}
$$

(e) $\quad 5 \longdiv { 3 . 0 5 0 }$

$$
\begin{array}{ll}
\frac{15}{1} & \\
\frac{0}{15} & \\
\frac{15}{\times} & Q=3.05
\end{array}
$$

(f) $\quad 8 5 \longdiv { 5 2 . 2 0 4 }$

$$
\frac{510}{173}
$$

$$
\frac{170}{34}
$$

$$
\frac{0}{340}
$$

$$
Q=6.204
$$

$$
\frac{340}{x}
$$

(g)

$$
\begin{array}{ll}
25 & \\
\begin{array}{ll}
0.5 \\
\frac{125}{12.50} \\
\hline 0 & Q
\end{array} & \\
\hline
\end{array}
$$

(h) $\frac{0.072}{1 4 \longdiv { 1 . 0 0 8 0 0 }}$
$\frac{98}{28}$
$\frac{28}{x}$
$Q=0.072$
2. (a) $2.1 \div 10=\frac{2.1}{10}=0.21$
(b) $\frac{25.34}{10}=2.534$
(c) $\frac{0.56}{10}=0.056$
（d）$\frac{148.67}{100}=1.4867$
（e）$\frac{25.6}{1000}=0.0256$
（f） $9.69 \div 1.9=\frac{9.69}{1.9}=\frac{9.69 \times 10}{1.9 \times 10}=\frac{96.9}{19}=5.1$

> 5.1 | 96.9 |
| :---: |
| $\frac{95}{19}$ |
| $\frac{19}{x}$ |$⿳ 亠 口 子$

（g） $2.52 \div 1.2=\frac{2.52}{1.2}=\frac{2.52 \times 10}{1.2 \times 10}=\frac{25.2}{12}=2.1$

$$
\begin{gathered}
2.1 \\
1 2 \longdiv { 2 5 . 2 } \\
\frac{24}{12} \\
\frac{12}{x} \\
\hline
\end{gathered}
$$

（h） $8.67 \div 0.24$

$$
\begin{aligned}
& =\frac{8.67}{0.24}-23 \begin{array}{l}
36.125 \\
8.67 \times 100 \\
\hline 0.24 \times 100 \\
\hline 867
\end{array} \\
& =\frac{8.67 \times 100}{0.24 \times 100}=\frac{867}{24}=36.125 \\
& \frac{72}{147} \\
& \frac{144}{30} \\
& \frac{24}{60} \\
& \frac{48}{120} \\
& \frac{120}{x}
\end{aligned}
$$

3. (a) $\frac{3.15}{1.5}=\frac{3.15 \times 10}{1.2 \times 10}=\frac{31.5}{15}=2.1$
(b) $\frac{2.05}{2.5}=\frac{2.05 \times 10}{2.5 \times 10}=\frac{20.5}{25}=0.82$
(c) $\frac{4.41}{2.1}=\frac{4.41 \times 10}{2.1 \times 10}=\frac{44.1}{21}=2.1$
(d) $\frac{6.05}{2.5}=\frac{6.05 \times 10}{2.5 \times 10}=\frac{60.5}{25}=2.42$
4. (a) $\frac{8}{0.4}=\frac{8 \times 10}{0.4 \times 10}=\frac{80}{4}=20$
(b) $\frac{1}{0.5}=\frac{1 \times 10}{0.5 \times 10}=\frac{10}{5}=2$
(c) $\frac{72}{0.144}=\frac{72 \times 1000}{0.144 \times 1000}=\frac{72000}{144}=500$
(d) $\frac{3}{0.8}=\frac{3 \times 10}{0.8 \times 10}=\frac{30}{8}=3.75$
(e) $\frac{7}{1.25}=\frac{7 \times 100}{1.25 \times 100}=\frac{700}{125}=5.6$
(f) $\frac{3}{8}=0.375$
(g) $\frac{9}{16}=0.5625$
(h) $\frac{12}{8}=\frac{3}{2}=1.5$

EXERCISE 7.6

1. Milkman had $=24.5$ l of milk

He sold $\quad=19.750$ l of milk

Milk left $=24.500$

$$
\begin{aligned}
-19.750 \\
\hline 4.750 \text { letre }
\end{aligned}
$$

2. Travel by bus $=26.3 \mathrm{~km}$

Travel by autorikshaw $=5.260 \mathrm{~km}$
Travel by on foot $\quad=0.350 \mathrm{~km}$
Total distance in travelling $=26.300$

$$
5.260
$$

5.350
+31.910 km
3. 1 m of ribbon costs $=₹ 3.25$
5.6 m of ribbon costs $=₹ 3.25 \times 5.6$
= ₹ 18.20
4. 1 ring weighs
$=5.016 \mathrm{gm}$
100 rings weighs
$=5.016 \times 100$
$=501.6 \mathrm{gm}$
5. 19 tins contains $=313.5$ litre of oil

1 tin contains $=\frac{313.5}{19}$ litre of oil

$$
=16.5 \text { litre of oil }
$$

6. No. of dresses could be made $=\frac{7 \mathrm{~m}}{1.75 \mathrm{~m}}$

$$
=\frac{7 \times 100}{1.75 \times 100}
$$

$$
=\frac{700}{175}=4
$$

7. 16.5 kg of rice in $=1$ sack

1 kg of rice in $=\frac{1}{16.5}$ sack
313.5 kg of rice in $=\frac{313.5}{16.5}$ sacks $=19$ sacks
8. In 1 hour distance covered $=84.25 \mathrm{~km}$

$$
\begin{aligned}
\text { In } 14 \text { hours distance covered } & =84.25 \times 14 \\
& =1179.50 \mathrm{~km}
\end{aligned}
$$

EXERCISE 7.7

1. (a) 5.7 (Round off) $=6$ (b) 7.3 (Round off) $=7$
(c) 97.56 (Round off) $=98$ (d) 412.68 (Round off) $=413$
(e) 142.499 (Round off) $=142$
2. (a) 1.35 (Round off) $=1.4$ (b) 24.46 (Round off) $=24.5$
(c) 46.234 (Round off) $=46.2$ (d) 414.072 (Round off) $=414.1$
(e) 123.345 (Round off) $=123.3$
3. (a) 1.234 (Round off) $=1.23$ (b) 6.765 (Round off) $=6.77$
(c) 43.123 (Round off) $=43.12$ (d) 55.226 (Round off) $=55.23$
(e) 636.299(Round off) $=636.30$
4. $\because 1 \mathrm{~kg}$ apple costs $=₹ 27$
$\therefore 2.55 \mathrm{~kg}$ apple costs $=₹ 27 \times 2.55$
= ₹ 68.85 = ₹69 (approx)

REVISION TEST PAPER-I

1. (a) $3,01,00,279$
(b) $94,10,00,035$
(c) $50,44,09,008$
(d) $8,30,16,214$
2. (a) $10000000+800000+70000+2000+70+4$
(b) $50000000+400000+30000+1000+80+9$
(c) $500,000+70000+9000+300+90+2$
(d) $2000000+700000+80000+8000+600+10+7$
3. (a) $2,93,73,246 \square 2,43,89,845$
(b) $36,463,209 \gg 36,436,209$
4. (a) $8,87,087 ; 8,78,807 ; 7,88,870$
(b) $44,44,35,015 ; 44,43,45,105 ; 44,43,45,015$
5. (a) $7,00,00,000$
(b) $9,00,00,000$
(c) $12,00,00,000$
(d) $29,00,00,000$
6. VIII, XII, XVII, XXXIX, LXXXIX, XCVIII, CXCIX, CCXVIII, DCXLVIII, DXCIII, DCLXVI, DCCLXXXIX
7. Do it yourself.
8. 192×125

$$
\begin{aligned}
& =(200-8) \times(100+25) \\
& =(200 \times 100)+(200 \times 25)-(8 \times 100)-(8 \times 25) \\
& =20000+5000-800-200 \\
& =25000-1000 \\
& =24000
\end{aligned}
$$

9. Repair cost $=₹ 356870$

Painting cost = ₹ 109400
Furniture cost =+₹ 264968
Total cost $=$ ₹ 731238
10. $6547832+3215387-4925466$
(a)

6547832
$+\quad 3215387$
9763219

(b) 35012345-5645789-13254678

35012345
$-\quad 5645789$
29366556

11. In one day sale of milk $=3456$ litre
\because Leap year has $=366$ days
So, In 366 days sale of milk $=3456 \times 366$

$$
\text { = } 1264896 \text { litre }
$$

12.(a)

300
$\times 16$
1800
3000
4800

(b) 400

13. 125 matchboxes in

$$
=1 \text { carton }
$$

1 matchbox in

$$
=\frac{1}{125}
$$

$$
827500 \text { matchboxes in }=\frac{827500}{125} \text { carton }
$$

$$
=6620 \text { cartons }
$$

14. 489×362

On estimating $=500 \times 400=200000$
15. 80618

$$
\begin{aligned}
\because \quad & (8+6+8)=22 ; \quad 1+0=1 \\
& 22-1=21
\end{aligned}
$$

\therefore It is not divisible by 11 .
16.

17. | 2 | $72,120,150$ |
| :--- | :--- |
| 3 | $36,60,75$ |
| | $12,20,25$ |

$$
\therefore H C F=2 \times 3=6
$$

18.

So, H.C.F of $391,425,527=17$
19. HCF of 144 and 198
$1 4 4 \longdiv { 1 9 8 } 2$

$\frac { 1 0 8 } { 3 6 } \longdiv { 5 4 } 1$
$\frac { 3 6 } { 1 8 } \longdiv { 3 6 / 2 }$
$\begin{array}{r}36 \\ \times \\ \hline\end{array}$
Mathematics (3, 4 and 5)
\therefore Maximum length of each piece $=18 \mathrm{~cm}$
20. LCM of 20, 36 and 45

2	$20,36,45$
2	$10,18,45$
5	$5,9,45$
9	$1,9,9$
	$1,1,1$

21.

2	$24,36,54$
3	$12,18,27$
3	4,
2	9
2	4,
	2,

22. LCM of $10,15,20$

5	10,	15,	20
2	2,	3,	4
	1,	3,	2

$$
\begin{aligned}
\text { LCM } & =2 \times 2 \times 3 \times 5 \\
& =60 \text { minutes } \\
\text { or } & =1 \text { hour }
\end{aligned}
$$

The bells will next ring together at
7:00 a.m. +1 hour

$$
=8.00 \text { a.m }
$$

23. (a) $1 \frac{3}{8}+\frac{11}{12}+1 \frac{5}{6}=\frac{11}{8}+\frac{11}{12}+\frac{11}{6}$

$$
\begin{aligned}
& =\frac{11 \times 3+11 \times 2+11 \times 4}{24} \\
& =\frac{33+22+44}{24} \\
& =\frac{99}{24}=\frac{33}{8}=4 \frac{1}{8}
\end{aligned}
$$

(b) $1 \frac{8}{15}+2 \frac{7}{10}+\frac{3}{5}=\frac{23}{15}+\frac{27}{10}+\frac{3}{5}$

$$
=\frac{23 \times 2+27 \times 3+3 \times 6}{30}
$$

$$
=\frac{46+81+18}{30}
$$

$$
=\frac{145}{30}=\frac{29}{6}=4 \frac{5}{6}
$$

(c) $2 \frac{1}{4}+1 \frac{3}{5}+2 \frac{1}{2}=\frac{9}{4}+\frac{8}{5}+\frac{5}{2}$

$$
=\frac{9 \times 5+8 \times 4+5 \times 10}{20}
$$

$$
=\frac{45+32+50}{20}
$$

$$
=\frac{127}{20}=6 \frac{7}{20}
$$

24. $5 \frac{3}{5}-2 \frac{3}{4}=\frac{28}{5}-\frac{11}{4}$

$$
\begin{aligned}
& =\frac{28 \times 4-11 \times 5}{20} \\
& =\frac{112-55}{20}=\frac{57}{20}=2 \frac{17}{20}
\end{aligned}
$$

25. After reading $\frac{2}{3}$ of a book, 60 pages are left.

That means $\frac{1}{3}$ of book $=60$ pages metre or 1 book $=60 \times 3=180$ pages
26. $\because 1$ metre of cloth costs $=₹ 32 \frac{1}{2}=₹ \frac{65}{2}$
$\therefore 3 \frac{1}{5}\left(\frac{16}{5}\right)$ metre cloth costs $=\left\{\left(\frac{65}{2} \times \frac{16}{5}\right)\right.$

$$
=₹(13 \times 8)=₹ 104
$$

27. (a) $1 \frac{1}{4} \times 2 \frac{2}{5}=\frac{5}{4} \times \frac{12}{5}$

$$
=\frac{5 \times 12^{3}}{4 \times 5}=3
$$

(b) $5 \frac{1}{7} \times 5 \frac{4}{9}=\frac{36}{7} \times \frac{49}{9}$

$$
=\frac{36^{3} \times 49^{7}}{4 \times 9}=4 \times 7=28
$$

(c) $\frac{3}{4} \times \frac{8}{9} \times \frac{27}{32}=\frac{3 \times 8 \times 27^{3}}{4 \times 9 \times 3 \tau_{4}}$

$$
=\frac{3 \times 3}{4 \times 4}=\frac{9}{16}
$$

(d) $2 \frac{2}{5} \times 2 \frac{2}{3} \times 8 \frac{1}{3}=\frac{12}{5} \times \frac{8}{3} \times \frac{25}{3}$

$$
\begin{aligned}
& =\frac{12^{4} \times 8 \times{ }^{5} 25}{5 \times 3 \times 3} \\
& =\frac{4 \times 8 \times 5}{3}=\frac{160}{3}=53 \frac{1}{3}
\end{aligned}
$$

28. $5 \frac{1}{9} l$ or $\frac{46}{9}$ litre kerosene costs $=₹ 92$

Then 1 litre kerosene costs $=₹ \frac{92}{\frac{46}{9}}$

$$
=₹\left(92^{2} \times \frac{9}{46}\right)=₹ 18
$$

29. Ratio $=\frac{\text { no. of teachers }}{\text { no. of students }}=\frac{57}{1900}=\frac{3}{100}=3: 100$
30. to 33. : Do it yourself
31.

$$
\begin{array}{r}
2.003 \\
0.700 \\
+16.790 \\
\hline 19.493 \\
\hline
\end{array}
$$

35.(a)
16. 10
$\begin{array}{r}-9.25 \\ \hline 6.85 \\ \hline\end{array}$
(b) 18.50
$\begin{array}{r}-16.75 \\ \hline 1.75 \\ \hline\end{array}$
(c) 7.00
$\begin{array}{r}-4.32 \\ \hline 2.68 \\ \hline\end{array}$
36.(a) Do it yourself
(b)
1.04
$\times 5.4$
(c)
6.17
$\times 4.3$
$\begin{array}{r}\times 5.4 \\ \hline 416\end{array}$
$\begin{array}{r}5200 \\ \hline 5.616 \\ \hline\end{array}$

$$
\begin{array}{r}
\times 4.3 \\
\hline 1851 \\
24680 \\
\hline 26.531 \\
\hline
\end{array}
$$

37.(a) $\frac{0.56}{10}=0.056$
(b)

$$
\begin{aligned}
& 0.5 \\
& 25 \begin{array}{l}
12.50 \\
\frac{125}{0} \\
\end{array} \\
& \\
&
\end{aligned}
$$

(c) $\frac{3}{0.8}=\frac{3 \times 10}{0.8 \times 10}=\frac{30}{8}=3.75$
38. 16.5 kg of rice in $=1$ sack

1 kg of rice in $\quad=\frac{1}{16.5}$ sack
313.5 kg of rice in $=\frac{313.5}{16.5}$ sacks $=19$ sacks

8. AVERAGE

EXERCISE 8.1

1. Average length of ribbons $=\frac{38+36+34+40}{4}$

$$
=\frac{148}{4}=37 \mathrm{~cm}
$$

2. Average of no. of students

$$
\begin{aligned}
& =\frac{39+36+34+33+28}{5} \\
& =\frac{170}{5}=34
\end{aligned}
$$

3. Average daily temperature

$$
\begin{aligned}
& =\frac{43+40+39+40+36+43+39}{7} \\
& =\frac{280}{7}=40^{\circ} \mathrm{C}
\end{aligned}
$$

4. Average height of students

$$
\begin{aligned}
& =\frac{150+149+152+145+147}{5} \\
& =\frac{743}{5}=148.6 \mathrm{~cm}
\end{aligned}
$$

5. Average monthly rainfall

$$
\begin{aligned}
& =\frac{2.8+5.5+5.8+12.5+4.4}{5} \\
& =\frac{31}{5}=6.2 \mathrm{~cm}
\end{aligned}
$$

6. Average daily attendance

$$
\begin{aligned}
& =\frac{39+39+43+40+42+37}{6} \\
& =\frac{240}{6}=40
\end{aligned}
$$

7. Average score

$$
\begin{aligned}
& =\frac{102+212+360+170+210+392}{6} \\
& =\frac{1446}{6}=241 \text { runs }
\end{aligned}
$$

(a) 1 (b) 5 (c) none
8. Distance travelled in $3 \mathrm{hrs}=$ speed \times time

$$
\begin{aligned}
& =65 \times 3 \\
& =195 \mathrm{~km} .
\end{aligned}
$$

Distance travelled in $2 \mathrm{hrs}=$ speed \times time

$$
\begin{aligned}
& =70 \times 2 \\
& =140 \mathrm{~km}
\end{aligned}
$$

Distance travelled in $5 \mathrm{hrs}=195+140=335 \mathrm{~km}$
Average speed $=\frac{335}{5}=67 \mathrm{~km} / \mathrm{hr}$

EXERCISE 8.2

1. Weekly consumption of milk for family A

$$
\begin{aligned}
& =14+12.5+16+14 l \\
& =56.5 l
\end{aligned}
$$

Weekly consumption of milk for family

$$
\begin{aligned}
B & =13+15+15+14 \\
& =57 l
\end{aligned}
$$

Weekly consumption of milk for family

$$
\begin{aligned}
C & =20+12+12+13 \\
& =57 l
\end{aligned}
$$

Thus, family A uses the least quantity of milk.
2. Average temperature of town A

$$
=\frac{7+9+8+11+6+9+6}{7}=\frac{56}{7}=8^{\circ} \mathrm{C}
$$

Average temperature of town B

$$
=\frac{4+8+7+10+11+13+10}{7}=\frac{63}{7}=9^{\circ} \mathrm{C}
$$

$\because 8^{\circ} \mathrm{C}<9^{\circ} \mathrm{C}$
Hence town A is colder.
3. Average attendance of class III

$$
=\frac{49+35+37+41+39+45}{6}=\frac{246}{6}=41
$$

Average attendance of class IV

$$
=\frac{40+40+38+43+40+33}{6}=\frac{234}{6}=39
$$

Average attendance of class V

$$
=\frac{40+42+39+36+38+42}{6}=\frac{237}{6}=39.5
$$

(a) Class III had best average of attendance during the week.
(b) Average attendance on Monday $=\frac{49+40+40}{3}$

$$
=\frac{129}{3}=43
$$

Average attendance on Tuesday $=\frac{35+40+42}{3}$

$$
=\frac{117}{3}=39
$$

Average attendance on Wednesday $=\frac{37+38+39}{3}$

$$
=\frac{114}{3}=38
$$

Average attendance on Thursday $=\frac{41+43+36}{3}$

$$
=\frac{120}{3}=40
$$

Average attendance on Friday $=\frac{39+40+38}{3}$

$$
=\frac{117}{3}=39
$$

Average attendance on Saturday $=\frac{45+33+42}{3}$

$$
=\frac{120}{3}=40
$$

Hence on wednesday the average attendance of three classes was the poorest (38).

9. PERCENTAGE

EXERCISE 9.1

1. (a) $\frac{4}{5} \times 100 \%=80 \%$ (b) $\frac{3}{4} \times 100 \%=75 \%$
(c) $\frac{3}{8} \times 100 \%=37.5 \%$ (d) $\frac{14}{25} \times 100 \%=56 \%$
(e) $\frac{7}{8} \times 100 \%=87.5 \%$ (f) $\frac{13}{20} \times 100 \%=65 \%$
(g) $\frac{17}{50} \times 100 \%=34 \%$
(h) $\frac{3}{10} \times 100 \%=70 \%$
(i) $\frac{19}{20} \times 100 \%=95 \%$
(j) $\frac{16}{25} \times 100 \%=64 \%$
(k) $0.1 \times 100 \%=10 \%$
(I) $0.7 \times 100 \%=70 \%$
(m) $0.18 \times 100 \%=18 \%$ (n) $0.36 \times 100 \%=36 \%$
(o) $0.06 \times 100 \%=6 \% \quad$ (p) $0.123 \times 100 \%=12.3 \%$
(q) $0.024 \times 100 \%=2.4 \%$
(r) $0.105 \times 100 \%=10.5 \%$
(s) $0.004 \times 100 \%=0.4 \%$
(t) $0.645 \times 100 \%=64.5 \%$
2. (a) $12 \%=\frac{12}{100}=\frac{3}{25}$
(b) $30 \%=\frac{30}{100}=\frac{3}{10}$
(c) $24 \%=\frac{24}{100}=\frac{6}{25}$
(d) $40 \%=\frac{40}{100}=\frac{2}{5}$
(e) $55 \%=\frac{55}{100}=\frac{11}{20}$
(f) $20 \%=\frac{20}{100}=\frac{1}{5}$
(g) $80 \%=\frac{80}{100}=\frac{4}{5}$
(h) $12 \%=\frac{25}{2} \times \frac{1}{100}=\frac{1}{8}$
(i) $72 \%=\frac{72}{100}=\frac{18}{25}$
(j) $75 \%=\frac{75}{100}=\frac{3}{4}$
3. (a) $12.5 \%=\frac{12.5}{100}=0.125$ (b) $43.2 \%=\frac{43.2}{100}=0.432$
(c) $8 \%=\frac{8}{100}=0.08$
(d) $0.5 \%=\frac{0.5}{100}=0.005$
(e) $10 \%=\frac{10}{100}=0.1$
(f) $75 \%=\frac{75}{100}=0.75$
(g) $7.5 \%=\frac{7.5}{100}=0.075$ (h) $0.3 \%=\frac{0.3}{100}=0.003$
(i) $80 \%=\frac{80}{100}=0.8 \quad$ (j) $95 \%=\frac{95}{100}=0.95$
4. (a) $\frac{17}{85} \times 100 \%=20 \%$
(b) $\frac{7}{70} \times 100 \%=10 \%$
(c) $\frac{8}{50} \times 100 \%=16 \%$
(d) $\frac{10}{200} \times 100 \%=5 \%$
(e) $\frac{16}{80} \times 100 \%=20 \%$
(f) $\frac{25}{400} \times 100 \%=6.25 \%$
5. (a) $60 \times \frac{25}{100}=\frac{1500}{100}=15$ (b) $60 \times \frac{15}{100}=\frac{900}{100}=9$
(c) $60 \times \frac{30}{100}=18 \mathrm{~min}$
(d) $100 \times \frac{15}{100}=15 \mathrm{~cm}$
(e) $100 \times \frac{50}{100}=50$ paise
(f) $1000 \times \frac{12.5}{100}=125 \mathrm{~g}$
(g) $1000 \times \frac{20}{100}=200 \mathrm{ml}$ (h) $1000 \times \frac{18}{100}=180 \mathrm{~m}$
(i) $450 \times \frac{10}{100}=₹ 45$
(j) $250 \times \frac{18}{100}=45 \mathrm{~g}$
(k) $320 \times \frac{12.5}{100}=40 \mathrm{ml}$
(I) $700 \times \frac{5}{100}=35 \mathrm{~m}$
6. (a) $\frac{24}{60} \times 100=40 \%$ of 1 hour
(b) $\frac{25}{100} \times 100=25 \%$ of 1 rupee
(c) $\frac{5}{100} \times 100=5 \%$ of 1 m
(d) $\frac{50}{1000} \times 100=5 \%$ of 11
(e) $\frac{15}{1000} \times 100=1.5 \%$ of 1 km
(f) $\frac{5}{10} \times 100=50 \%$ of 1 cm
(g) $\frac{5}{1000} \times 100=0.5 \%$ of 11
(h) $\frac{35}{100} \times 100=35 \%$ of 1 m
(i) $\frac{35}{1000} \times 100=3.5 \%$ of 1 km
(j) $\frac{125}{1000} \times 100=12.5 \%$ of 1 kg
7. 20% of the length $=25 \mathrm{~m}$

$$
\begin{array}{ll}
\text { or } \frac{20}{100} \text { of the length }=25 \mathrm{~m} \\
\therefore & \text { Length }=\frac{25 \times 100^{5}}{2 \sigma}=125 \mathrm{~m}
\end{array}
$$

8. 12% of the no. $=27$
or $\frac{12}{100}$ of the no. $=27$
\therefore no. $\quad=\frac{27^{9} \times 100}{12_{4}}=\frac{900}{4}$
$=225$

EXERCISE 9.2

1. Annual rainfall $=125 \mathrm{~cm}$

Winter rainfall $=12 \%$

$$
=125 \times \frac{12}{100}=15 \mathrm{~cm}
$$

2. Total students $=550$

Students on education trip $=80 \%$ of 550
$=550 \times \frac{80}{100}$
$=440$ students
3. No. of boys $=650$ boys

No. of girls $=600$ girls
Total students $=1250$
Percentage of girls $=\frac{600}{1250} \times 100=48 \%$
4. Percentage of marks got by Alice $=\frac{1067}{1100} \times 100$
= 97\%
5. Total students $=800$

In which no. of girls $=392$
So. no. of boys $=408$

$$
\begin{aligned}
\text { Percentage of boys in school } & =\frac{408}{800} \times 100 \\
& =51 \%
\end{aligned}
$$

6. Win games $=70 \%$ of 20 games

$$
=\frac{20 \times 70}{100}
$$

$$
=14 \text { games }
$$

7. Population of village $=12,380$

Increment of population = 15% per year
So, after one year population will be
$=12380+15 \%$ of 12380
$=12380+\frac{12380 \times 15}{100}$
$=12380+1857$
$=14,237$
8. Price of camera = ₹ 2500

Discount =15 \%
So Sarah pay
= $2500-15 \%$ of 2500
$=2500-\frac{2500 \times 15}{100}$
$=2500-375$
= ₹ 2125
10. PROFIT AND LOSS

EXERCISE 10.1

1. (a) Profit $=S . P-C . P=118-100=₹ 18$

Mathematics (3, 4 and 5)
(197)

Teacher Manual
(b) Profit $=\mathrm{S} . \mathrm{P}-\mathrm{C} . \mathrm{P}=100-85=₹ 15$
(c) Loss $=$ C.P $-\mathrm{S} . \mathrm{P}=120-65=₹ 55$
(d) Loss = C.P - S.P $=72.5-65=₹ 7.5$
2. (a) Profit $=S . P-C . P=275-250=₹ 25$
(b) Loss = C.P - S.P = 600-500 =₹ 100
(c) Loss = C.P - S.P = 265-251 =₹ 14
(d) Profit $=$ S.P $-\mathrm{C} \cdot \mathrm{P}=309-297=₹ 12$
3. C. P. of 40 Pencils $=₹ 140$
S. P. of 40 Pencils $=40 \times 4=₹ 160$
$\because S . P>C . P$
\therefore Profit $=S . P-C . P$ = $160-140$ = ₹ 20
4. C. P. of 25 litre of milk $=25 \times 25=$ ₹ 625
S. P. of 25 litre of milk $=27 \times 25=₹ 675$
$\because S . P>C . P$

$$
\begin{aligned}
\therefore \text { Profit } & =\text { S.P }- \text { C.P } \\
& =675-625 \\
& =₹ 50
\end{aligned}
$$

5. C. P. $=₹ 545$

Overhead charges $=₹ 75$
So, now C.P = $545+75=₹ 620$

$$
\begin{aligned}
& \text { S.P }=₹ 700 \\
& \begin{aligned}
\therefore \text { Profit } & =S . P-C . P \\
& =700-620 \\
& =₹ 80
\end{aligned}
\end{aligned}
$$

6. C. P. of 25 dozen of bananas $=₹ 400$

$$
\text { S.P. of } 25 \text { dozen of bananas }=₹ 20 \times 25=₹ 500
$$

$\because S . P>C . P$

$$
\begin{aligned}
\therefore \text { Profit } & =S . P-C . P \\
& =500-400 \\
& =₹ 100
\end{aligned}
$$

7. C. P. of sofa set $=₹ 4500$

Overhead charges = ₹ 100
So, new C.P of sofa set $=4500+100=₹ 4600$
S.P of sofa set = ₹ 5000
$\because S . P>C . P$
\therefore Profit $=S . P-C . P$

$$
\begin{aligned}
& =5000-4600 \\
& =₹ 400
\end{aligned}
$$

EXERCISE 10.2

1. (a) S.P. $=$ C.P + Profit
$=250+18$
= ₹268
(b) S.P. = C.P - Loss

$$
\begin{aligned}
& =970-40 \\
& =₹ 930
\end{aligned}
$$

(c) S.P. $=$ C.P + Profit
$=5000+290$
= ₹5290
(d) S.P. = C.P - Loss
$=10,115-550$
= ₹ 9565
2. (a) C.P. = S.P - Profit
$=450-20$
= ₹ 430
(b) C.P. $=$ S.P + Loss
$=720+35$
= ₹ 755
(c) C.P. $=$ S.P + Loss
$=1030+210$
= ₹1240
(d) C.P. = S.P - Profit
= 8947-369
$=₹ 8578$
3. C.P. $=20 \times 16$
= ₹ 320
Profit $=$ ₹ 80
\therefore S.P = C.P + Profit
$=320+80$
= ₹ 400
4. C.P. $=₹ 3250$

Profit = ₹ 275

$$
\begin{aligned}
\therefore \quad S . P & =C . P+\text { Profit } \\
& =3250+275 \\
& =₹ 3525
\end{aligned}
$$

5. C.P. $=₹ 700$

Loss = ₹ 35
$\therefore \quad S . P=C . P-L o s s$
$=700-35$
= ₹ 665
6. C.P. $=₹ 545$

$$
\begin{aligned}
\text { Loss } & =₹ 65 \\
\therefore \quad \text { S.P } & =C . P-\text { Loss } \\
& =545-65 \\
& =₹ 480
\end{aligned}
$$

7. S.P. = ₹ 990

$$
\begin{aligned}
\text { Profit } & =₹ 99 \\
\therefore \quad C . P & =S . P-\text { Profit } \\
& =990-99 \\
& =₹ 891
\end{aligned}
$$

8. \quad Profit $=₹ 875$

$$
\begin{aligned}
S . P & =₹ 9300 \\
\therefore \quad C . P & =\text { S.P }- \text { Profit } \\
& =9300-875 \\
& =₹ 8425
\end{aligned}
$$

9. Loss = ₹ 500
S.P = ₹ 6100
$\therefore C . P=S . P+$ Loss

$$
\begin{aligned}
& =6100+500 \\
& =₹ 6600
\end{aligned}
$$

10. Loss = ₹ 27

$$
\begin{aligned}
S . P & =₹ 580 \\
\therefore \quad C . P & =S . P+\text { Loss } \\
& =580+27 \\
& =₹ 607
\end{aligned}
$$

EXERCISE 10.3

1. (a) C.P. $=₹ 300$

$$
\begin{aligned}
\text { S.P. } & =₹ 270 \\
\therefore \text { Loss } & =\text { C.P }-S . P \\
& =300-270 \\
& =₹ 30 \\
\text { \%Loss } & =\frac{\text { Loss }}{C . P} \times 100 \\
& =\frac{30}{300} \times 100 \\
& =10 \%
\end{aligned}
$$

(b) C.P. $=₹ 540$

$$
\text { S.P. = ₹ } 450
$$

$$
\therefore \text { Loss }=C . P-S . P
$$

$$
=540-450
$$

$$
=₹ 90
$$

$$
\% \text { Loss }=\frac{\text { Loss }}{C . P} \times 100
$$

$$
=\frac{90}{540} \times 100
$$

$$
=16.66 \%
$$

(c) C.P. $=₹ 1200$
S.P. = ₹ 1344
$\therefore \quad$ Profit $=S . P-C . P$

$$
=1344-1200
$$

$$
\text { = ₹ } 144
$$

$$
\begin{aligned}
\text { \%Profit } & =\frac{\text { Profit }}{C . P} \times 100 \\
& =\frac{144}{1200} \times 100 \\
& =12 \%
\end{aligned}
$$

(d) C.P. $=₹ 500$
S.P. = ₹ 600
$\therefore \quad$ Profit $=S . P-C . P$

$$
=600-500
$$

$$
\text { = ₹ } 100
$$

$$
\% \text { Profit }=\frac{\text { Profit }}{C . P} \times 100
$$

$$
=\frac{100}{500} \times 100
$$

$$
=20 \%
$$

2. C.P. $=₹ 800$
S.P. = ₹ 900
\therefore Profit $=S . P-C . P$

$$
=900-800
$$

$$
\text { = ₹ } 100
$$

$$
\begin{aligned}
\text { \%Profit } & =\frac{\text { Profit }}{C . P} \times 100 \\
& =\frac{100}{800} \times 100
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{100}{8} \\
& =12.5 \%
\end{aligned}
$$

3. C.P. $=₹ 1250$

$$
\begin{aligned}
\begin{aligned}
\text { S.P. } & = \\
\text { Profit } & =\text { S.P }- \text { C.P } \\
& =1350-1250 \\
& =₹ 100 \\
\text { \%Profit } & =\frac{\text { Profit }}{\text { C.P }} \times 100 \\
& =\frac{100}{1250} \times 100 \\
& =8 \%
\end{aligned}
\end{aligned}
$$

4. C.P. = ₹ 5560

Overhead charges $=₹ 440$
New C.P = $5560+440$

$$
\text { = ₹ } 6000
$$

\therefore Profit $=$ S.P - C.P
= 6120-6000
= ₹ 120
\%Profit $=\frac{\text { Profit }}{\text { C.P }} \times 100$
$=\frac{120}{6000} \times 100$
$=2 \%$
5. Cost of 15 buckets $=₹ 15 \times 50=₹ 750$

Cost of 20 buckets $=₹ 20 \times 40=₹ 800$
Overhead charges $=₹ 50$

Now, C.P = ₹ 1600
S.P. of 35 buckets $=35 \times 45$

$$
=₹ 1575
$$

$\because S . P<C . P$
\therefore Loss $=$ C.P - S.P
= $1600-1575$
= ₹ 25
\%Loss $=\frac{\text { Loss }}{\text { C.P }} \times 100$
$=\frac{25}{1600} \times 100$
$=\frac{25}{16}=1 \frac{9}{16} \%$
6. $\quad C . P=₹ 450$

$$
\begin{aligned}
S . P=30 \times 18=₹ 540 \\
\because \quad S . P>C . P
\end{aligned} \quad \begin{aligned}
\therefore \quad \text { Profit } & =S . P-C . P \\
& =540-450 \\
& =₹ 90 \\
\text { \%Profit } & =\frac{\text { Profit }}{C . P} \times 100 \\
& =\frac{90}{450} \times 100 \\
& =20 \%
\end{aligned}
$$

7. C.P = ₹ 16
$S . P=₹ 17$
\therefore Profit $=S . P-C . P$

$$
\begin{aligned}
& =17-16 \\
& =₹ 1 \\
\text { \%Profit } & =\frac{\text { Profit }}{C . P} \times 100 \\
& =\frac{1}{16} \times 100 \\
& =6.25 \%
\end{aligned}
$$

8. $\quad C . P=₹ 250$

$$
\begin{array}{rl}
\text { S.P }=₹ & 200 \\
\therefore \text { Loss } & =\text { C.P }-S . P \\
& =250-200 \\
& =₹ 50 \\
\text { \%Loss } & =\frac{\text { Loss }}{C . P} \times 100 \\
& =\frac{50}{250} \times 100 \\
& =20 \%
\end{array}
$$

9. $\quad C . P=₹ 6000$

Overhead charges $=₹ 250$
New C.P = $6000+250$

$$
\text { = ₹ } 6250
$$

S.P. = ₹ 7000
\therefore Profit $=S . P-C . P$

$$
=7000-6250
$$

$$
\begin{aligned}
& =₹ 750 \\
\text { \%Profit } & =\frac{\text { Profit }}{C . P} \times 100
\end{aligned}
$$

$$
=\frac{750}{6250} \times 100=12 \%
$$

10.

$$
\begin{aligned}
\text { C.P } & =₹ 1500 \\
\text { Loss } & =₹ 135 \\
\% \text { Loss } & =\frac{\text { Loss }}{C . P} \times 100 \\
& =\frac{135}{1500} \times 100=9 \%
\end{aligned}
$$

II. SHOPPING BILLS

EXERCISE II.I

1. (a)

Bill
Lucy Provisions
Colaba, Mumbai
Telephone :
Bill no. :
Date : 26.08.2016
M/S Annie Andheri, Mumbai

S.No.	Name of item	Quantity	Price Per Unit ₹	Amount $₹$
1.	Oil	2 kg	$95 / \mathrm{kg}$	190
2.	Sugar	500 g	$32 / \mathrm{kg}$	16
3.	Bathing Soap	2 dozen	$120 /$ dozen	240
4.	Detergent			
	Powder	1 packet	65	65
5.	Toothpaste	1	35	35
			Total	546

For Lucy Provisions
(b) Amount get back $=$ ₹ $1000-₹ 546=₹ 454$
2. (a)

Bill

Broadway General store Vasant kunj, New Delhi

Telephone :
Bill no. :
Date : \qquad

Name : Angela

S.No.	Name of item	Quantity	Price Per Unit	Amount
1.	Pencil 4B	6	4	24
2.	Erasers	2	3	6
3.	Sharpeners	2	5	10
4.	Notebooks	5	15	75
5.	Crayons	6	8	48
6.	Colour Box	1	32	32
			Total	195

For Broadway General Store
(b) Amount get back = ₹ 200 - ₹ 195 = ₹5
3. to 5. : Do it yourself.

12. MEASUREMENT OF LENGTH, MASS AND CAPACITY

EXERCISE 12.1

1. (a) $1 \mathrm{~m} 5 \mathrm{~cm}=1.05 \mathrm{~m}$ (b) $4 \mathrm{~m} 10 \mathrm{~cm}=4.10 \mathrm{~m}$
(c) $1 \mathrm{~cm} 9 \mathrm{~mm}=1.9 \mathrm{~cm}$ (d) $10 \mathrm{~m} 35 \mathrm{~cm}=10.35 \mathrm{~m}$
(e) $1 \mathrm{~km} 350 \mathrm{~m}=1.350 \mathrm{~km}(\mathrm{f}) 1 \mathrm{~km} \mathrm{5m}=1.005 \mathrm{~km}$
2. (a) $2460 \mathrm{~m}=2.460 \mathrm{~km}$ (b) $567 \mathrm{~m}=0.567 \mathrm{~km}$
(c) $2.312 \mathrm{~km}=2312 \mathrm{~m}$
(d) $7.050 \mathrm{~km}=7050 \mathrm{~m}$
(e) 4.12 m
$=412 \mathrm{~cm}$
(f) 3.01 m
$=301 \mathrm{~cm}$

(g) 1.20 m	$=120 \mathrm{~cm}$ (h) 45 m	$=0.045 \mathrm{~km}$
(i) 5 cm	$=0.05 \mathrm{~m} \quad$ (j) 4 mm	$=0.04 \mathrm{~cm}$
(k) 2.3 cm	$=23 \mathrm{~mm}$ (I) 578 m	$=578 \mathrm{~m}$
(m) 15 mm	$=1.5 \mathrm{~cm}$ (n) 7.234 km	$=7234$
(o) 107 cm	$=1.07 \mathrm{~m}$	

EXERCISE 12.2

1. (a) $4 \mathrm{~kg} 235 \mathrm{~g}=4.235 \mathrm{~kg}$
(b) $3 \mathrm{~kg} \mathrm{50g}=3.050 \mathrm{~kg}$
(c) $5 \mathrm{~kg} \mathrm{5g}=5.005 \mathrm{~kg}$
(d) $1 \mathrm{~g} 234 \mathrm{mg}=1.234 \mathrm{~g}$
(e) $5 \mathrm{~g} 80 \mathrm{mg}=5.080 \mathrm{~g}$
(f) $3 \mathrm{~g} \mathrm{5} \mathrm{mg}=3.005 \mathrm{~g}$
2. (a) $2376 \mathrm{mg}=2.376 \mathrm{~g}$
(b) $5042 \mathrm{~g}=5.042 \mathrm{~kg}$
(c) $3.650 \mathrm{~kg}=3650 \mathrm{~g}$
(d) $0.005 \mathrm{~kg}=5 \mathrm{~g}$
(e) $3005 \mathrm{~g}=3.005 \mathrm{~kg}$
(f) 0.050 kg
$=50 \mathrm{~g}$
(g) $50 \mathrm{~g}=0.050 \mathrm{~kg}$
(h) 5 g
$=0.005 \mathrm{~kg}$
(i) $3020 \mathrm{mg}=3.020 \mathrm{~g}$
(j) $105 \mathrm{mg}=0.105 \mathrm{~g}$
(k) $3.060 \mathrm{~g}=3.020 \mathrm{~kg}$
(I) $0.050 \mathrm{~g}=50 \mathrm{~g}$

EXERCISE 12.3

1. (a) $5 \mathrm{kl} 153 \mathrm{l}=5.153 \mathrm{kl}$ (b) $3 \mathrm{kl} 50 \mathrm{l}=3.050 \mathrm{kl}$
(c) $5 \mathrm{kl} 5 \mathrm{l}=5.005 \mathrm{kl}$
(d) $2 l 432 \mathrm{ml}=2.432 \mathrm{l}$
(e) $5 \mathrm{l} 80 \mathrm{ml}=5.080 \mathrm{l}$
(f) $3 l 5 \mathrm{ml}=3.005 \mathrm{l}$
2. (a) $1267 \mathrm{l}=1.267 \mathrm{kl}$
(b) $2045 \mathrm{l}=2.045 \mathrm{kl}$
(c) $2.350 \mathrm{kl}=2350 \mathrm{l}$
(d) $0.005 \mathrm{kl}=5 \mathrm{l}$
(e) $3005 \mathrm{l}=3.005 \mathrm{kl}$
(f) 0.050 kl
$=50 l$
(g) $50 \mathrm{l}=0.050 \mathrm{kl}$
(h) $5 l$
$=0.005 \mathrm{kl}$
(i) $3020 \mathrm{ml}=3.020 \mathrm{l}$
(j) 105 ml
$=0.105 \mathrm{l}$
(k) $3.060 \mathrm{l}=3.020 \mathrm{ml}$
(I) 0.050 l
$=50 \mathrm{ml}$

EXERCISE 12.4

1. Total distance travelled $=72 \mathrm{~km}$

Travelled by bus $\quad=65.5 \mathrm{~km}$
Travelled by autorikshaw $=5.255 \mathrm{~km}$
\therefore rest on foot distance $=72-(65.5+5.255)$
= $72-70.755$
$=1.245 \mathrm{~km}$
2. In 1 Minute covered height $=15 \mathrm{~m} \mathrm{~cm}$

$$
=15.05 \mathrm{~m}
$$

In 25 minutes covered height $=15.05 \times 25$

$$
=376.25 \mathrm{~m}
$$

3. In 17 minutes distance covered $=124 \mathrm{~m} 27 \mathrm{~cm}$

$$
\begin{aligned}
& =124.27 \mathrm{~m} \\
& =\frac{124.27}{17} \\
& =7.31 \mathrm{~m}
\end{aligned}
$$

$$
\text { In } 1 \text { minute distance covered }=\frac{124.27}{17}
$$

4. Net weight of carton $=5 \mathrm{~kg}$

Grapes rotten	$=350 \mathrm{~g}=0.350 \mathrm{~kg}$
Children ate	$=1 \mathrm{~kg} \mathrm{365} \mathrm{g}$
	$=1.365 \mathrm{~kg}$
Used in evening	$=800 \mathrm{~g}=0.8 \mathrm{~kg}$

So grapes left $=5-0.350-1.365-0.8$

$$
\begin{aligned}
& =5-(0.350+1.365+0.8) \\
& =5-2.515 \\
& =2.485 \mathrm{~kg}
\end{aligned}
$$

5. 24 pieces weight $=8 \mathrm{~kg} 520 \mathrm{~g}$

$$
=8.520 \mathrm{~kg}
$$

So, 1 piece weight $=\frac{8.520}{24} \mathrm{~kg}$

$$
\begin{aligned}
& =0.355 \mathrm{~kg} \\
& =355 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
\therefore 32 \text { carton contains } & =1.075 \times 32 \mathrm{~kg} \text { of sweets } \\
& =34.400 \mathrm{~kg} \text { of sweets }
\end{aligned}
$$

7. 1 km distance took $=70 \mathrm{ml}$ petrol

$$
\begin{aligned}
\therefore 72 \mathrm{~km} \text { distance took } & =72 \times 70 \mathrm{ml} \text { petrol } \\
& =5040 \mathrm{ml} \text { petrol } \\
& =5.040 \mathrm{l} \text { petrol }
\end{aligned}
$$

8. 8 children get $=3 l$ of lemon

$$
\begin{aligned}
\therefore 1 \text { child gets } & =\frac{3}{8} l \text { of lemon } \\
& =\frac{3}{8} \times 1000 \mathrm{ml} \text { of lemon } \\
& =375 \mathrm{ml} \text { of lemon }
\end{aligned}
$$

9. Total paint was $=10 \mathrm{l}$
\therefore Used for doors $=4 l 350 \mathrm{ml}$ $=4.350 l$

Used for windows $=2 l 450 \mathrm{ml}$

$$
=2.450 l
$$

$$
\begin{aligned}
\text { So Paint left } & =10-4.350-2.450 \\
& =10-6.800 \\
& =3.200 l
\end{aligned}
$$

10. 45 persons get $=290.250 l$ kerosene

$$
\begin{aligned}
1 \text { person gets } & =\frac{290.250}{45} l \text { kerosene } \\
& =6.450 l \text { kerosene }
\end{aligned}
$$

13. SPEED, DISTANCE AND TIME

EXERCISE 13.1

1. Distance $=390 \mathrm{~km}$

$$
\begin{aligned}
\text { Time } & =6 \mathrm{hr} 30 \mathrm{~min} \\
& =6.5 \mathrm{hr} .
\end{aligned}
$$

$$
\text { Speed }=\frac{\text { Distance }}{\text { Time }}=\frac{390}{6.5}
$$

$$
=60 \mathrm{~km} / \mathrm{hr}
$$

2. Speed of car $=\frac{\text { Distance }}{\text { Time }}$

$$
\begin{aligned}
& =\frac{250}{4} \\
& =62.5 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

3. Speed of car $=\frac{\text { Distance }}{\text { Time }}$

$$
\begin{aligned}
& =\frac{704}{11} \\
& =64 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

4. (a) $45 \mathrm{~km} / \mathrm{hr}=\frac{45 \times 1000 \mathrm{~m}}{60 \times 60 \mathrm{sec}}$

$$
\begin{aligned}
& =45 \times \frac{5}{18} \\
& =\frac{25}{2}=12.5 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

(b) $72 \mathrm{~km} / \mathrm{hr}=72 \times \frac{5}{18}$

$$
=20 \mathrm{~m} / \mathrm{sec}
$$

(c) $63 \mathrm{~km} / \mathrm{hr}=63^{7} \times \frac{5}{18}=\frac{35}{2}=17.5 \mathrm{~m} / \mathrm{sec}$
5. (a) $\frac{36 \mathrm{~km}}{1 \text { hour }}=\frac{36 \times 1000 \mathrm{~m}}{60 \text { minute }}$

$$
\begin{aligned}
& =36 \times \frac{50}{3} \mathrm{~m} / \text { minute } \\
& =12 \times 50=600 \mathrm{~m} / \text { minute }
\end{aligned}
$$

(b) $\frac{60 \mathrm{~km}}{1 \text { hour }}=60 \times \frac{50}{3} \mathrm{~m} /$ minute

$$
=20 \times 50=1000 \mathrm{~m} / \text { minute }
$$

(c) $\frac{84 \mathrm{~km}}{1 \text { hour }}=84 \times \frac{50}{3} \mathrm{~m} /$ minute

$$
=28 \times 50=1400 \mathrm{~m} / \text { minute }
$$

6. (a) $\frac{300 \mathrm{~m}}{\min }=\frac{0.300 \mathrm{~km}}{\frac{1}{60} \text { hour }}$

$$
=0.3 \times 60=18.0 \mathrm{~km} / \mathrm{hr}
$$

(b) $\frac{25 \mathrm{~m}}{\mathrm{sec}}=\frac{0.025 \mathrm{~km}}{\frac{1}{60 \times 60} \text { hour }}$

$$
\text { (c) } \begin{aligned}
\frac{40 \mathrm{~m}}{\mathrm{sec}} & =\frac{0.025 \times 60 \times 60=90 \mathrm{~km} /}{\frac{0.040 \mathrm{~km}}{3600} \mathrm{hour}} \\
& =0.040 \times 3600=144 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

7. \quad Distance $=700$ metre

Time $=20 \mathrm{~min}$
Speed $=\frac{\text { Distance }}{\text { Time }}=\frac{700}{20}$
$=35 \mathrm{~m} /$ minute
8. Speed $=12 \mathrm{~km} / \mathrm{hr}$

Distance $=400 \mathrm{~m}=0.4 \mathrm{~km}$
Time $=\frac{\text { Distance }}{\text { Speed }}=\frac{0.4}{12} \mathrm{hr}$
$=\frac{0.4}{12} \times 60 \mathrm{~min}$
$=0.4 \times 5 \mathrm{~min}$
$=2 \mathrm{~min}$
9. Speed $=2 \frac{1}{2} \mathrm{~km} / \mathrm{hr}$

Time $=30$ minutes

$$
=\frac{30}{60} \mathrm{hr}=\frac{1}{2} \mathrm{hr}
$$

Distance $=$ Speed \times time

$$
\begin{aligned}
& =2 \frac{1}{2} \times \frac{1}{2} \\
& =\frac{5}{2} \times \frac{1}{2}=\frac{5}{4}=1 \frac{1}{4} \mathrm{~km}
\end{aligned}
$$

10. Speed of Celia $=\frac{300 \mathrm{~m}}{40 \mathrm{sec}}$

$$
=\frac{300 \times \frac{1}{1000} \mathrm{~km}}{40 \times \frac{1}{3600} \mathrm{hr}}
$$

$$
=\frac{\frac{3}{10} \mathrm{~km}}{\frac{1}{90} \mathrm{hr}}
$$

$$
=\frac{3}{10} \times 90 \mathrm{~km} / \mathrm{hr}
$$

$$
=27 \mathrm{~km} / \mathrm{hr}
$$

11. $\begin{aligned} \text { Speed } & =70 \mathrm{~km} / \mathrm{hr} \\ \text { Time } & =2 \mathrm{hr} 30 \mathrm{~min}=2.5 \mathrm{hr}\end{aligned}$

Distance $=$?
Distance $=$ Speed \times time
$=70 \times 2.5$
$=175 \mathrm{~km}$
12. Speed $=5 \mathrm{~m} / \mathrm{sec}$

Distance $=5 \mathrm{~km}=5000 \mathrm{~m}$
Time = ?
Time $=\frac{\text { Distance }}{\text { Speed }}=\frac{5000}{5} \mathrm{sec}$
$=1000 \mathrm{sec}$
$=16 \mathrm{~min} 40 \mathrm{sec}$
13. Speed $=2 \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
\text { Distance } & =1 \mathrm{~km}=1000 \mathrm{~m} \\
\text { Time } & =? \\
\text { Time } & =\frac{\text { Distance }}{\text { Speed }}=\frac{1000}{2} \mathrm{sec} \\
& =500 \mathrm{sec} \\
& =8 \mathrm{~min} 20 \mathrm{sec}
\end{aligned}
$$

14. Distance $=1100 \mathrm{~km}$

Time $=1 \mathrm{hr} 50 \mathrm{~min}$
Speed $=$?
Time $=1 \mathrm{hr} 50 \mathrm{~min}$

$$
=1 h r+\frac{50}{60} h r
$$

$$
=1 \mathrm{hr}+\frac{5}{6} \mathrm{hr}
$$

$$
=\frac{11}{6} \mathrm{hr}
$$

So, Speed $=\frac{\text { Distance }}{\text { Time }}=\frac{1100}{\frac{11}{6}} \mathrm{~km} / \mathrm{hr}$
$=1100 \times \frac{6}{11} \mathrm{~km} / \mathrm{hr}$
$=600 \mathrm{~km} / \mathrm{hr}$
15. Distance $=6.3 \mathrm{~km}=6300 \mathrm{~m}$

Time $=7 \mathrm{~min}$
Speed = ?
Speed $=\frac{\text { Distance }}{\text { Time }}=\frac{6300}{7} \mathrm{~m} / \mathrm{min}$
$=900 \mathrm{~m} / \mathrm{min}$

$$
\text { or } \quad \begin{aligned}
& =\frac{900 \times \frac{1}{1000} \mathrm{~km}}{\frac{1}{60} \mathrm{hr}} \\
& =\frac{9}{10} \times 60 \mathrm{~km} / \mathrm{hr} \\
& =54 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

14.LINES AND ANGLES

EXERCISE 14.1

1. Fill in the blanks

(a) A ray has one end-point.
(b) A line-segment has two end-points.
(c) A line has no end point
(d) Two lines can intersect only in one point.
(e) One and only one line can pass through two given points.
(f) Parallel lines meet at no point.
2. (a) In how many points can two lines meet or intersect?

Ans: only one
(b) How many lines can pass through one given point?

Ans: infinite
(c) How many lines can pass through two given points?

Ans: only one
(d) How many lines can intersect in one point?

Ans: infinite
3. to 8. : Do it yourself

EXERCISE 14.2

1. $\angle A O B, \angle B O C, \angle C O D$,
$\angle D O A, \angle A O C, \angle B O D$

2. $\angle \mathrm{AOB}, \angle \mathrm{BOA}, \angle \mathrm{BOC}, \angle \mathrm{COB}, \angle \mathrm{COD}, \angle \mathrm{DOC}$, $\angle D O A, \angle A O D, \angle A O C, \angle C O A, \angle B O D, \angle D O B$
3. acute angle, right angle, obtuse angle, straight angle, reflex angle, complete anlge
4. (a) $69^{\circ} \rightarrow$ acute angle \quad (b) $181^{\circ} \rightarrow$ reflex angle
(c) $90^{\circ} \rightarrow$ right angle
(d) $89^{\circ} \rightarrow$ acute angle
(e) $179^{\circ} \rightarrow$ obtuse angle
(f) $91^{\circ} \rightarrow$ obtuse angle
(g) $300^{\circ} \rightarrow$ reflex angle
(h) $270^{\circ} \rightarrow$ reflex angle
(i) $180^{\circ} \rightarrow$ straight angle (j) $360^{\circ} \rightarrow$ complete angle
5. (a) $\frac{180^{\circ}}{90^{\circ}}=2$
(b) $\frac{360^{\circ}}{90^{\circ}}=4$
(c) $\frac{270^{\circ}}{90^{\circ}}=3$
(d) $\frac{90^{\circ}}{90^{\circ}}=1$
6. (a) $90^{\circ}+90^{\circ}+90^{\circ}=270^{\circ}$
(b) $90^{\circ}+90^{\circ}=180^{\circ}$
(c) $90^{\circ}+90^{\circ}+90^{\circ}+90^{\circ}=360^{\circ}$
(d) 90°
7. (a) $\angle \mathrm{POQ}$ and $\angle \mathrm{QOR} ; \angle \mathrm{ROS}$ and $\angle \mathrm{SOP}$
(b) $\angle \mathrm{POQ}$ and $\angle \mathrm{ROS} ; \angle \mathrm{QOR}$ and $\angle \mathrm{SOP}$?
(c) $\angle \mathrm{POQ}=\angle \mathrm{ROS} ; \angle \mathrm{QOR}=\angle \mathrm{SOP}$
8. (a) $90^{\circ}-30^{\circ}=60^{\circ}$
(b) $90^{\circ}-50^{\circ}=40^{\circ}$
(c) $90^{\circ}-25^{\circ}=65^{\circ}$
(d) $90^{\circ}-45^{\circ}=45^{\circ}$
(e) $90^{\circ}-82^{\circ}=8^{\circ}$
9. (a) $180^{\circ}-60^{\circ}=120^{\circ}$
(b) $180^{\circ}-85^{\circ}=95^{\circ}$
(c) $180^{\circ}-100^{\circ}=80^{\circ}$
(d) $180^{\circ}-135^{\circ}=50^{\circ}$
(e) $180^{\circ}-175^{\circ}=5^{\circ}$
10. Do it yourself.
11. Do it yourself.

15. CIRCLES

EXERCISE 15.1

1. to 3. Do it yourself
2. (a) $\mathrm{r}=2.5 \mathrm{~cm} \Rightarrow \mathrm{~d}=2 \mathrm{r}=2 \times 2.5=5 \mathrm{~cm}$
(b) $r=4 \frac{1}{2} \mathrm{~cm} \Rightarrow d=2 r=2 \times \frac{9}{2}=9 \mathrm{~cm}$
(c) $r=5 \mathrm{~cm} \Rightarrow d=2 r=2 \times 5=10 \mathrm{~cm}$
(d) $\mathrm{r}=7.2 \mathrm{~cm} \Rightarrow \mathrm{~d}=2 \mathrm{r}=2 \times 7.2=14.4 \mathrm{~cm}$
(e) $\mathrm{r}=9.9 \mathrm{~cm} \Rightarrow \mathrm{~d}=2 \mathrm{r}=2 \times 9.9=19.8 \mathrm{~cm}$
3. (a) $d=10 \mathrm{~cm} \Rightarrow r=\frac{d}{2}=\frac{10}{2}=5 \mathrm{~cm}$
(b) $d=6.6 \mathrm{~cm} \Rightarrow r=\frac{d}{2}=\frac{6.6}{2}=3.3 \mathrm{~cm}$
(c) $\mathrm{d}=7.2 \mathrm{~cm} \Rightarrow \mathrm{r}=\frac{\mathrm{d}}{2}=\frac{7.2}{2}=3.6 \mathrm{~cm}$
(d) $\mathrm{d}=5 \mathrm{~cm} \Rightarrow \mathrm{r}=\frac{\mathrm{d}}{2}=\frac{5}{2}=2.5 \mathrm{~cm}$
(e) $\mathrm{d}=9.4 \mathrm{~cm} \Rightarrow r=\frac{\mathrm{d}}{2}=\frac{9.4}{2}=4.7 \mathrm{~cm}$
4. (a) $d=14 \mathrm{~cm}$

$$
\begin{aligned}
\text { Circumference } & =\frac{22}{7} \times \text { diameter } \\
& =\frac{22}{7} \times 14 \\
& =44 \mathrm{~cm}
\end{aligned}
$$

(b) $\mathrm{d}=5.6 \mathrm{~cm}$

Circumference $=\frac{22}{7} \times$ diameter

$$
\begin{aligned}
& =\frac{22}{7} \times 5.6 \\
& =176 \mathrm{~cm}
\end{aligned}
$$

(c) $\mathrm{d}=21 \mathrm{~cm}$

$$
\begin{aligned}
\text { Circumference } & =\frac{22}{7} \times \text { diameter } \\
& =\frac{22}{7} \times 21 \\
& =66 \mathrm{~cm}
\end{aligned}
$$

(d) $\mathrm{d}=7.7 \mathrm{~cm}$

Circumference $=\frac{22}{7} \times$ diameter

$$
\begin{aligned}
& =\frac{22}{7} \times 7.7 \\
& =24.2 \mathrm{~cm}
\end{aligned}
$$

(e) $\mathrm{d}=42 \mathrm{~cm}$

$$
\begin{aligned}
\text { Circumference } & =\frac{22}{7} \times \text { diameter } \\
& =\frac{22}{7} \times 42 \\
& =132 \mathrm{~cm}
\end{aligned}
$$

7. (a) Diameter $=$ Circumference $\div \frac{22}{7}$

$$
\begin{aligned}
& =44 \div \frac{22}{7} \\
& =44 \times \frac{7}{22} \\
& =2 \times 7=14 \mathrm{~cm}
\end{aligned}
$$

(b) Diameter $=$ Circumference $\div \frac{22}{7}$

$$
\begin{aligned}
& =77 \div \frac{22}{7} \\
& =77 \times \frac{7}{22} \\
& =24.5 \mathrm{~cm}
\end{aligned}
$$

(c) Diameter $=$ Circumference $\div \frac{22}{7}$

$$
\begin{aligned}
& =5.5 \div \frac{22}{7} \\
& =5.5 \times \frac{7}{22} \\
& =175 \mathrm{~cm}
\end{aligned}
$$

(d) Diameter $=$ Circumference $\div \frac{22}{7}$

$$
\begin{aligned}
& =16 \frac{1}{2} \div \frac{22}{7} \\
& =\frac{33}{2} \times \frac{7}{22}
\end{aligned}
$$

$$
=5.25 \mathrm{~cm}
$$

(e) Diameter $=$ Circumference $\div \frac{22}{7}$

$$
\begin{aligned}
& =49.5 \div \frac{22}{7} \\
& =49.5 \times \frac{7}{22} \\
& =15.75 \mathrm{~cm}
\end{aligned}
$$

8. to 9. Do it yourself.

16. TRIANGLE

EXERCISE 16.1

1. 3 sides: $P Q, Q R, R P ; 3$ angles: $\angle P Q R, \angle Q R P, \angle R P Q$
2. (a) $47^{\circ}+73^{\circ}+60^{\circ}=180^{\circ}$
\Rightarrow Triangle Possible
(b) $60^{\circ}+40^{\circ}+73^{\circ}=173^{\circ}$
\Rightarrow Triangle not possible
(c) $63^{\circ}+67^{\circ}+51^{\circ}=181^{\circ}$
\Rightarrow Triangle not possible
(d) $90^{\circ}+60^{\circ}+30^{\circ}=180^{\circ}$
\Rightarrow Triangle Possible
(e) $90^{\circ}+90^{\circ}+90^{\circ}=270^{\circ}$
\Rightarrow Triangle not possible
(f) $75^{\circ}+70^{\circ}+33^{\circ}=178^{\circ}$
\Rightarrow Triangle not possible
3. (a) Third angle $=180^{\circ}-\left(60^{\circ}+70^{\circ}\right)$

$$
\begin{aligned}
& =180^{\circ}-130^{\circ} \\
& =50^{\circ}
\end{aligned}
$$

(b) Third angle $=180^{\circ}-\left(50^{\circ}+85^{\circ}\right)$

$$
\begin{aligned}
& =180^{\circ}-135^{\circ} \\
& =45^{\circ}
\end{aligned}
$$

(c) Third angle $=180^{\circ}-\left(90^{\circ}+50^{\circ}\right)$

$$
\begin{aligned}
& =180^{\circ}-140^{\circ} \\
& =40^{\circ}
\end{aligned}
$$

4. In right angled triangle

One angle is $=90^{\circ}$
Given angle $=38^{\circ}$

$$
\begin{aligned}
\text { So other angle } & =180^{\circ}-\left(90^{\circ}+38^{\circ}\right) \\
& =180^{\circ}-128^{\circ} \\
& =52^{\circ}
\end{aligned}
$$

5. Two angles of a triangle $=68^{\circ}$ and 68°

So third angle is $=180^{\circ}-\left(68^{\circ}+68^{\circ}\right)$

$$
\begin{aligned}
& =180^{\circ}-136^{\circ} \\
& =44^{\circ}
\end{aligned}
$$

6. In a right angled triangle one angle is 90°.

Other both acute angles are equal.
Let they both are x°.
Then, angle of right angled triangle are,
$90^{\circ}, x^{\circ}$ and x°

$$
\text { So, } \begin{aligned}
90^{\circ}+x^{\circ}+x^{\circ} & =180^{\circ} \\
90^{\circ}+2 x^{\circ} & =180^{\circ}
\end{aligned}
$$

$$
\begin{array}{r}
2 x^{\circ}=180^{\circ}-90^{\circ}=90^{\circ} \\
x=\frac{90^{\circ}}{2}=45^{\circ}
\end{array}
$$

Hence, they are 45° and 45°.
7. Let each angle of a triangle $=x^{\circ}$

Then angle of triangle be x°, x° and x°.
So,

$$
\begin{aligned}
& x^{\circ}+x^{\circ}+x^{\circ}=180^{\circ} \\
& 3 x^{\circ}=180^{\circ} \\
& x^{\circ}=\frac{180^{\circ}}{3^{\circ}}=60^{\circ} .
\end{aligned}
$$

8. (a) $A B=5 \mathrm{~cm}, B C=7 \mathrm{~cm}, C A=8 \mathrm{~cm}$

$$
\begin{aligned}
& A B+B C=5+7=12 \\
\because \quad & A B+B C>C A \\
\therefore & \text { Triangle is possible. }
\end{aligned}
$$

(b) $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}, \mathrm{CA}=8 \mathrm{~cm}$

$$
\begin{aligned}
& B C+C A=7+8=15 \\
\because \quad & B C+C A>A B
\end{aligned}
$$

\therefore Triangle is possible.
(c) $A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}, C A=1 \mathrm{~cm}$

$$
A B+C A=3+1=4
$$

$\because \quad B C+C A \ngtr A B$
\therefore Triangle is not possible.
(d) $\mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CA}=3 \mathrm{~cm}$

$$
B C+C A=4+3=7
$$

$\because \quad B C+C A \ngtr A B$
\therefore Triangle is not possible.
9. (a) All sides are equal = equilateral triangle
(b) Two sides are equal $=$ isosceles triangle
(c) All sides are unequal $=$ scalene triangle
10. (a) $3.5 \mathrm{~cm}, 3.5 \mathrm{~cm}, 5 \mathrm{~cm}=$ isosceles triangle
(b) $4.5 \mathrm{~cm}, 4.5 \mathrm{~cm}, 4.5 \mathrm{~cm}=$ equilateral triangle
(c) $8 \mathrm{~cm}, 4 \mathrm{~cm}, 7 \mathrm{~cm}=$ scalene triangle
(d) $5 \mathrm{~cm}, 5 \mathrm{~cm}, 5 \mathrm{~cm}=$ equilateral triangle
(e) $4 \mathrm{~cm}, 3 \mathrm{~cm}, 3 \mathrm{~cm}=$ isosceles triangle
(f) $5 \mathrm{~cm}, 5.5 \mathrm{~cm}, 6 \mathrm{~cm}=$ scalene triangle
11. (a) $60^{\circ}, 30^{\circ}, 90^{\circ}=$ right-angled
(b) $70^{\circ}, 70^{\circ}, 40^{\circ} \quad=$ acute-angled
(c) $30^{\circ}, 40^{\circ}, 110^{\circ}=$ obtuse-angled
(d) $90^{\circ}, 45^{\circ}, 45^{\circ}=$ right-angled
(e) $120^{\circ}, 30^{\circ}, 30^{\circ} \quad=$ obtuse-angled
(f) $67^{\circ}, 63^{\circ}, 50^{\circ} \quad=$ acute-angled

12. Fill in the blanks

(a) If in the $\triangle \mathrm{ABC}, \angle \mathrm{A}=75^{\circ}$ and $\angle \mathrm{B}=25^{\circ}$, then triangle is acute-angled.
(b) If in the $\triangle \mathrm{PQR}, \angle \mathrm{P}=60^{\circ}$ and $\angle \mathrm{Q}=30^{\circ}$, then triangle is right-angled.
(a) If in the $\triangle \mathrm{DEF}, \angle \mathrm{D}=20^{\circ}$ and $\angle \mathrm{F}=50^{\circ}$, then triangle is obtuse-angled.

13. Fill in the blanks

(a) In an acute-angled triangle all the angles must be acute.
(b) An obtuse-angled triangle has an obtuse angle.
(c) In an obtuse-angled triangle, the other two angles are acute.

EXERCISE 16.2

Do it yourself

17. AREA

EXERCISE 17.1

1. (a) $l=10 \mathrm{~cm}, b=5 \mathrm{~cm}$

$$
\begin{aligned}
A & =l \times b \\
& =10 \times 5=50 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) $l=6.5 \mathrm{~cm}, b=4 \mathrm{~cm}$

$$
\begin{aligned}
A & =l \times b \\
& =6.5 \times 4=26.0 \mathrm{~cm}^{2}
\end{aligned}
$$

(c) $l=8.5 \mathrm{~cm}, b=7 \mathrm{~cm}$

$$
\begin{aligned}
A & =l \times b \\
& =8.5 \times 7=59.5 \mathrm{~cm}^{2}
\end{aligned}
$$

(d) $l=7.3 \mathrm{~cm}, b=6 \mathrm{~cm}$

$$
\begin{aligned}
A & =l \times b \\
& =7.3 \times 6=43.8 \mathrm{~cm}^{2}
\end{aligned}
$$

(e) $l=14.4 \mathrm{~cm}, b=10 \mathrm{~cm}$

$$
\begin{aligned}
A & =l \times b \\
& =14.4 \times 10=144 \mathrm{~cm}^{2}
\end{aligned}
$$

(f) $l=17.2 \mathrm{~cm}, b=9 \mathrm{~cm}$

$$
A=l \times b
$$

$$
=17.2 \times 9=154.8 \mathrm{~cm}^{2}
$$

2. (a) Breadth of rectangle $=7 \mathrm{~cm}$

Area of rectangle $=105$ sq.cm
So, length of rectangle $=\frac{105}{7} \mathrm{~cm}$

$$
=15 \mathrm{~cm}
$$

(b) Length of rectangle $=16 \mathrm{~cm}$

Area of rectangle $\quad=96$ sq. cm
So, length of rectangle $=\frac{96}{16} \mathrm{~cm}$

$$
=6 \mathrm{~cm}
$$

3. (a) side $=11 \mathrm{~cm}$

$$
\begin{aligned}
\text { Area } & =\text { side } \times \text { side } \\
& =11 \times 11 \\
& =121 \mathrm{sq} . \mathrm{cm}
\end{aligned}
$$

(b) side $=3.1 \mathrm{~cm}$

Area $=$ side \times side

$$
=3.1 \times 3.1
$$

$$
=9.61 \mathrm{sq} . \mathrm{cm}
$$

(c) side $=2.4 \mathrm{~cm}$

$$
\text { Area }=\text { side } \times \text { side }
$$

$$
=2.4 \times 2.4
$$

$$
=5.76 \mathrm{sq} . \mathrm{cm}
$$

(d) side $=3.5 \mathrm{~cm}$

Area $=$ side \times side

$$
\begin{aligned}
& =3.5 \times 3.5 \\
& =12.25 \mathrm{sq} . \mathrm{cm}
\end{aligned}
$$

(e) side $=2.6 \mathrm{~cm}$

$$
\begin{aligned}
\text { Area } & =\text { side } \times \text { side } \\
& =2.6 \times 2.6 \\
& =6.76 \mathrm{sq} . \mathrm{cm}
\end{aligned}
$$

(f) side $=6.5 \mathrm{~cm}$

$$
\begin{aligned}
\text { Area } & =\text { side } \times \text { side } \\
& =6.5 \times 6.5 \\
& =42.25 \mathrm{sq} . \mathrm{cm}
\end{aligned}
$$

4. (a) Area $=49 \mathrm{sq} . \mathrm{cm}$

$$
\begin{aligned}
\text { side } & =\sqrt{49} \\
& =7 \mathrm{~cm}
\end{aligned}
$$

(b) Area $=100 \mathrm{sq} . \mathrm{cm}$

$$
\begin{aligned}
\text { side } & =\sqrt{100} \\
& =10 \mathrm{~cm}
\end{aligned}
$$

(c) Area $=64 \mathrm{sq} . \mathrm{cm}$

$$
\begin{aligned}
\text { side } & =\sqrt{64} \\
& =8 \mathrm{~cm}
\end{aligned}
$$

5. Do it yourself.
6. Side of square field $=45 \mathrm{~m}$
area of square field $=$ side \times side

$$
=45 \times 45=2025 \text { sq.m }
$$

$$
\begin{aligned}
\because \quad 1 \text { sq.m costs } & =₹ 6 \\
2025 \text { sq.m costs } & =₹(2025 \times 6) \\
& =₹ 12150
\end{aligned}
$$

7. Length $=2 \mathrm{~m}$

Breadth $=1.2 \mathrm{~m}$
Area $=$ length \times breadth
$=2 \times 1.2$
$=2.4 \mathrm{~m}^{2}$
For two sides $=2.4 \times 2$
$=4.8 \mathrm{~m}^{2}$
For four planks $=4 \times 4.8$
$=19.2 \mathrm{~m}^{2}$
8. Ist playground,

$$
\begin{aligned}
& l=120 \mathrm{~m} \\
& b=50 \mathrm{~m} \\
& \therefore \text { area }=l \times b \\
& =120 \times 50 \\
& =6000 \mathrm{~m}^{2} \\
& \text { IInd playground, } \\
& l=130 \mathrm{~m} \\
& b=40 \mathrm{~m} \\
& \therefore \text { area }=l \times b \\
& =130 \times 40=5200 \mathrm{~m}^{2}
\end{aligned}
$$

So, Ist playground is bigger.
9. Side of a square tile $=10 \mathrm{~cm}$,

Area of a square tile $=10 \times 10=100 \mathrm{~cm}^{2}$
Length of floor $=5 \mathrm{~m}$
Breadth of floor $=4.5 \mathrm{~m}$
\therefore area of floor $=l \times b$

$$
\begin{aligned}
& =5 \times 4.5 \\
& =22.5 \mathrm{~m}^{2} \\
& =22.5 \times 100 \times 100 \mathrm{~cm}^{2} \\
& =225000 \mathrm{~cm}^{2} \\
& =\frac{225000}{100} \\
& =2250
\end{aligned}
$$

So, no. of tiles $=\frac{225000}{100}$
10. Length of courtyard $=20 \mathrm{~m}$

Breadth of courtyard $=18 \mathrm{~m}$
Area of courtyard $=20 \times 18$

$$
=360 \mathrm{~m}^{2}
$$

$$
=360 \times 100 \times 100
$$

$$
=3600000 \mathrm{~cm}^{2}
$$

Length of bricks $=22.5 \mathrm{~cm}$
Breath of bricks $=10 \mathrm{~cm}$
Area of bricks $=22.5 \times 10$

$$
=225 \mathrm{~cm}^{2}
$$

So, no. of bricks $=\frac{3600000}{225}=16000$
11. Length of room $=7 \mathrm{~m}$

$$
\text { Breadth of room }=5 \mathrm{~m}
$$

$$
\text { Area of room } \quad=7 \times 5
$$

$$
=35 \mathrm{~m}^{2}
$$

$$
\text { Each child required }=70 \mathrm{~cm} \times 50 \mathrm{~cm}
$$

$$
=0.7 \mathrm{~m} \times 0.5 \mathrm{~m}
$$

$$
=0.35 \text { sq.m }
$$

So, no. of children $=\frac{35}{0.35}$

$$
=100
$$

18. DATA HANDLING

EXERCISE 18.1
1.

Animals	Tally Marks	Numbers	
Dogs		20	
Cats	H	6	
Rabbits	H H^{\prime}	5	
Goats	\|	I	3
Parrots	H	6	

(a) Most favourite pet animals $=$ Dogs (no. of 20)
(b) Least favourite pet animals $=$ Goat (no. of 3)
(c) Dogs: 20, cats:6, rabbits : 5, goats:3; parrots : 6
(d) Cats and Parrots (no. of 6)
2. to 4. Do it yourself.
5.

(a) Drawing = no. of 200
(b) maths $=$ no. of 400
(c) G.K. $=250$ books
(d) Hindi and Env.study(300)
(e) Difference of Hindi and English books
$=350-300=50$ books
REVISION TEST PAPER - II

1. The average daily sale of the store during the given 6 days

$$
\begin{aligned}
& =\frac{\text { The total sale of the cooperative store for the } 6 \text { days }}{\text { Number of days }} \\
& =\frac{7380}{6}=₹ 1230
\end{aligned}
$$

2. Total salary of 20 employees $=₹ 3250 \times 50=₹ 65000$

Total salary of 10 employees $=₹ 4000 \times 20=₹ 40000$
Therefore, total salary of 30 employees
= ₹65000 + ₹40000 = ₹105000

The average salary of an employee in the office $=\frac{₹ 105000}{30}=₹ 3500$
3. (a) $\frac{4}{5} \times 100 \%=80 \%$ (b) $\frac{13}{20} \times 100 \%=65 \%$
(c) $\frac{7}{10} \times 100 \%=70 \%$
(d) $\frac{16}{25} \times 100 \%=64 \%$
(e) $0.645 \times 100 \%=64.5 \%$
4. (a) $8 \%=\frac{8}{100}=0.08$ (b) $75 \%=\frac{75}{100}=0.75$
(c) $95 \%=\frac{95}{100}=0.95$
(d) $7.5 \%=\frac{7.5}{100}=0.075$
(e) $43.2 \%=\frac{43.2}{100}=0.432$
5. (a) $\frac{16}{80} \times 100 \%=20 \%$
(b) $\frac{10}{200} \times 100 \%=5 \%$
6. (a) $1000 \times \frac{20}{100}=200 \mathrm{ml}$
(b) $250 \times \frac{18}{100}=45 \mathrm{~g}$
7. 20% of the length $=25 \mathrm{~m}$

$$
\begin{array}{ll}
\text { or } \frac{20}{100} \text { of the length }=25 \mathrm{~m} \\
\therefore & \text { Length }=\frac{25 \times 100^{5}}{2 \sigma}=125 \mathrm{~m}
\end{array}
$$

8. Andy got 96% of 650 marks $={\frac{96}{z^{100}}}^{48} \times{ }^{13} 650$ marks
= 624 marks
9. C. P. of 25 litre of milk $=25 \times 25=₹ 625$
S. P. of 25 litre of milk $=27 \times 25=₹ 675$
$\because S . P>C . P$

$$
\begin{aligned}
\therefore \text { Profit } & =\text { S.P }-C . P \\
& =675-625 \\
& =₹ 50
\end{aligned}
$$

10. Loss = ₹ 27

$$
\begin{aligned}
S . P & =₹ 580 \\
\therefore \quad C . P & =S . P+\text { Loss } \\
& =580+27 \\
& =₹ 607
\end{aligned}
$$

11. Cost of 15 buckets $=₹ 15 \times 50=₹ 750$

Cost of 20 buckets $=₹ 20 \times 40=₹ 800$
Overhead charges $=₹ 50$
Now, C.P = ₹ 1600
S.P. of 35 buckets $=35 \times 45$

$$
=₹ 1575
$$

$$
\because S . P<C . P
$$

$$
\therefore \text { Loss }=C . P-S . P
$$

$$
=1600-1575
$$

$$
\begin{aligned}
& =₹ 25 \\
\% \text { Loss } & =\frac{\text { Loss }}{C . P} \times 100
\end{aligned}
$$

$$
=\frac{25}{1600} \times 100
$$

$$
=\frac{25}{16}=1 \frac{9}{16} \%
$$

12.(a) $15 \mathrm{~mm}=1.5 \mathrm{~cm}$ (b) $5 \mathrm{~cm}=0.05 \mathrm{~m}$
(c) $107 \mathrm{~cm}=1.07 \mathrm{~m}$ (d) $578 \mathrm{~m}=0.578 \mathrm{~km}$
(e) $5 \mathrm{~g}=0.005 \mathrm{~kg}$
(f) $0.0088 \mathrm{~kg}=88 \mathrm{~g}$
(g) $0.050 \mathrm{l}=50 \mathrm{~m}$
(i) $105 \mathrm{ml}=0.105 \mathrm{l}$
13. 1 km distance took $=70 \mathrm{ml}$ petrol
$\therefore 72 \mathrm{~km}$ distance took $=72 \times 70 \mathrm{ml}$ petrol

$$
\begin{aligned}
& =5040 \mathrm{ml} \text { petrol } \\
& =5.040 \mathrm{l} \text { petrol }
\end{aligned}
$$

14. 24 pieces weight $=8 \mathrm{~kg} 520 \mathrm{~g}$

$$
=8.520 \mathrm{~kg}
$$

So, 1 piece weight $=\frac{8.520}{24} \mathrm{~kg}$

$$
=0.355 \mathrm{~kg}
$$

$$
=355 \mathrm{~g}
$$

15. In 1 Minute covered height $=15 \mathrm{~m} 5 \mathrm{~cm}$

$$
=15.05 \mathrm{~m}
$$

In 25 minutes covered height $=15.05 \times 25$

$$
=376.25 \mathrm{~m}
$$

16. Distance $=504 \mathrm{~km}$

Time taken to cover the distance

$$
\begin{aligned}
& =4 \text { hours } 30 \mathrm{~min} \\
& =4 \frac{1}{2} \text { hours }=\frac{9}{2} \text { hours }
\end{aligned}
$$

$$
\begin{aligned}
\text { Speed } & =\frac{\text { Distance }}{\text { Time }}=504 \div \frac{9}{2} \\
& =504 \times \frac{2}{9}=112 \mathrm{~km} / \mathrm{hour}
\end{aligned}
$$

Speed of Rajdhani Express between New Delhi and Kanpur is 112 km/hour.
17. Speed $=2 \frac{1}{2} \mathrm{~km} / \mathrm{hr}$

Time $=30$ minutes

$$
=\frac{30}{60} \mathrm{hr}=\frac{1}{2} \mathrm{hr}
$$

$$
\begin{aligned}
\text { Distance } & =\text { Speed } \times \text { time } \\
& =2 \frac{1}{2} \times \frac{1}{2} \\
& =\frac{5}{2} \times \frac{1}{2}=\frac{5}{4}=1 \frac{1}{4} \mathrm{~km}
\end{aligned}
$$

18. \& 19. Do it yourself.
20.(a) $180^{\circ}-60^{\circ}=120^{\circ}$
(b) $180^{\circ}-85^{\circ}=95^{\circ}$
(c) $180^{\circ}-100^{\circ}=80^{\circ}$
(d) $180^{\circ}-135^{\circ}=50^{\circ}$
(e) $180^{\circ}-175^{\circ}=5^{\circ}$
21.(a) $r=2.5 \mathrm{~cm} \Rightarrow d=2 r=2 \times 2.5=5 \mathrm{~cm}$
(b) $r=4 \frac{1}{2} \mathrm{~cm} \Rightarrow d=2 r=2 \times \frac{9}{2}=9 \mathrm{~cm}$
(c) $\mathrm{r}=5 \mathrm{~cm} \Rightarrow \mathrm{~d}=2 \mathrm{r}=2 \times 5=10 \mathrm{~cm}$
22.(a) $d=14 \mathrm{~cm}$.

Circumference $=\frac{22}{7} \times$ diameter

$$
\begin{aligned}
& =\frac{22}{7} \times 14 \\
& =44 \mathrm{~cm}
\end{aligned}
$$

(b) $\mathrm{d}=21 \mathrm{~cm}$

$$
\begin{aligned}
\text { Circumference } & =\frac{22}{7} \times \text { diameter } \\
& =\frac{22}{7} \times 21 \\
& =66 \mathrm{~cm}
\end{aligned}
$$

(c) $\mathrm{d}=5.6 \mathrm{~cm}$

Circumference $=\frac{22}{7} \times$ diameter

$$
\begin{aligned}
& =\frac{22}{7} \times 5.6 \\
& =176 \mathrm{~cm}
\end{aligned}
$$

23. (a) $5 \mathrm{~cm}, 5 \mathrm{~cm}, 5 \mathrm{~cm}=$ equilateral triangle
(b) $3.5 \mathrm{~cm}, 3.5 \mathrm{~cm}, 5 \mathrm{~cm}=$ isosceles triangle
(c) $5 \mathrm{~cm}, 5.5 \mathrm{~cm}, 6 \mathrm{~cm}=$ scalene triangle
24. Let each angle of a triangle $=x^{\circ}$

Then angle of triangle be x°, x° and x°
So,

$$
\begin{aligned}
& x^{\circ}+x^{\circ}+x^{\circ}=180^{\circ} \\
& 3 x^{\circ}=180^{\circ} \\
& x^{\circ}=\frac{180^{\circ}}{3^{\circ}}=60^{\circ}
\end{aligned}
$$

25. In a right angled triangle one angle is 90°.

Other both acute angles are equal.
Let they both are x°.
Then, angle of right angled
triangle are, $90^{\circ}, \mathrm{x}^{\circ}$ and x°.

$$
\begin{aligned}
\text { So, } 90^{\circ}+x^{\circ}+x^{\circ} & =180^{\circ} \\
90^{\circ}+2 x^{\circ} & =180^{\circ} \\
2 x^{\circ}=180^{\circ}-90^{\circ} & =90^{\circ} \\
x=\frac{90^{\circ}}{2} & =45^{\circ}
\end{aligned}
$$

Hence, they are 45° and 45°.
26.(a) $A B=5 \mathrm{~cm}, B C=7 \mathrm{~cm}, C A=8 \mathrm{~cm}$

$$
\begin{aligned}
& A B+B C=5+7=12 \\
\because \quad & A B+B C>C A
\end{aligned}
$$

\therefore Triangle is possible
(b) $\mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CA}=3 \mathrm{~cm}$

$$
\begin{aligned}
& B C+C A=4+3=7 \\
\because \quad & B C+C A \ngtr A B
\end{aligned}
$$

\therefore Triangle is not possible.
27. Do it yourself.
28. Length of room $=7 \mathrm{~m}$

Breadth of room $=5 \mathrm{~m}$
Area of room $=7 \times 5$

$$
\begin{aligned}
& =35 \mathrm{~m}^{2} \\
\text { Each child required } & =70 \mathrm{~cm} \times 50 \mathrm{~cm} \\
& =0.7 \mathrm{~m} \times 0.5 \mathrm{~m} \\
& =0.35 \mathrm{sq} . \mathrm{m}
\end{aligned}
$$

So, no. of children $=\frac{35}{0.35}$
$=100$
29. Length of courtyard $=20 \mathrm{~m}$

Breadth of courtyard $=18 \mathrm{~m}$
Area of courtyard $=20 \times 18$
$=360 \mathrm{~m}^{2}$
$=360 \times 100 \times 100$
$=3600000 \mathrm{~cm}^{2}$
Length of bricks $=22.5 \mathrm{~cm}$
Breadth of bricks $=10 \mathrm{~cm}$
Area of bricks $=22.5 \times 10$
$\begin{aligned} & =225 \mathrm{~cm}^{2} \\ \text { So, no. of bricks } & =\frac{3600000}{225}=16000\end{aligned}$

Notes

